LIFE

A FULL-FORCE STORM WITH GALE WINDS BLOWING

Topic: 

  • LIFE
http://vimeo.com/80907474

"For the last ten or fifteen years, I've been trying to understand situations in nature in which the genes within a single individual are in disagreement—or put differently, in which genes within an individual are selected in conflicting directions. It's an enormous topic, which 20 years ago looked like a shadow on the horizon, just as about a hundred years ago what later became relativity theory was just two little shadows on the horizon of physics, and blew up to become major developments.

AN ECO-EVOLUTIONARY DANCE THROUGH DEEP TIME

[6.16.04]

How did the world of dinosaurs differ from our own? Since we live in a miniscule snapshot in time, most people can’t relate to a thousand years, let alone millions, or billions of years. So how do we get our minds wrapped around Mesozoic timescapes? And once we’re there, how do we then recreate the world of dinosaurs?

 

Introduction by John Brockman

Over the past few years, Edge has published several pieces on Stewart Brand's "long now" idea, the most recent concerning the installation Danny Hillis' 10,000-year clock on a mountain in Nevada. If Brand is identified with the "long now", then Sampson, a University of Utah paleontologist, is the champion of the "long then". His work on dinosaurs is concerned with new ideas involved in negotiating the "eco-evolutionary dance through deep time".

Sampson, the host of Discovery Channel’s "Dinosaur Planet", is "most fascinated by the Late Cretaceous, in particular the last 15 million years of the Mesozoic (80-65 million years ago), just before a giant asteroid (or whatever it was) slammed into the planet. We know more about dinosaurs from this time than from any other. Similarly, the place I’m most interested in is western North America, because we know more about the dinosaurs from this region than from any other. Now we can begin to consider questions like, what role did dinosaurs play in their ecosystems? How did they relate to their environments, and what were these environments like? With often gigantic sizes, dinosaurs pushed the envelope of what it is to be a land-living animal; how were they able to do that? Perhaps most importantly, how did evolution and ecology converge to drive the various dinosaur radiations, and why were these oversized reptiles so successful for so long? In short, how did evolutionary and ecological processes combine to drive changes in dinosaurs? Paleontologists are only beginning to take this eco-evolutionary perspective, with important new insights.”

—JB

JOHN MAYNARD SMITH (1920-2004) an obituary

[5.5.04]

JOHN MAYNARD SMITH (1920-2004)

"It rapidly became clear to me that the most imaginative way of looking at evolution, and the most inspiring way of teaching it, was to say that it's all about the genes. It's the genes that, for their own good, are manipulating the bodies they ride about in. The individual organism is a survival machine for its genes."

RICHARD DAWKINS, elected as a Fellow of the Royal Society in May, 2001, is a gifted writer, who is known for his popularization of Darwinian ideas as well as for original thinking on evolutionary theory. He has invented telling metaphors that illuminate the Darwinian debate: His book The Selfish Gene argues that genes-molecules of DNA-are the fundamental units of natural selection, the "replicators." Organisms, including ourselves, are "vehicles," the packaging for "replicators." The success or failure of replicators is based on their ability to build successful vehicles. There is a complementarity in the relationship: vehicles propagate their replicators, not themselves; replicators make vehicles. In The Extended Phenotype, he goes beyond the body to the family, the social group, the architecture, the environment that animals create, and sees these as part of the phenotype-the embodiment of the genes. He also takes a Darwinian view of culture, exemplified in his invention of the "meme," the unit of cultural inheritance; memes are essentially ideas, and they, too, are operated on by natural selection.

Richard Dawkins is an evolutionary biologist and the former Charles Simonyi Professor For The Understanding Of Science at Oxford University; Fellow of New College; author of The Selfish Gene, The Extended Phenotype, The Blind Watchmaker, River out of Eden (ScienceMasters Series), Climbing Mount Improbable, Unweaving the Rainbow, The Devil's Chaplain, The Ancestor's Tale, and The God Delusion.

On November 12th, 1996, he delievered the Richard Dimbleby Lecture on BBC1 Television in England, entitled "Science, Delusion and the Appetite for Wonder." (See below).

THE ADJACENT POSSIBLE

Topic: 

  • LIFE
http://vimeo.com/79422156

"An autonomous agent is something that can both reproduce itself and do at least one thermodynamic work cycle. It turns out that this is true of all free-living cells, excepting weird special cases. They all do work cycles, just like the bacterium spinning its flagellum as it swims up the glucose gradient. The cells in your body are busy doing work cycles all the time."

THE ADJACENT POSSIBLE

[11.9.03]

An autonomous agent is something that can both reproduce itself and do at least one thermodynamic work cycle. It turns out that this is true of all free-living cells, excepting weird special cases. They all do work cycles, just like the bacterium spinning its flagellum as it swims up the glucose gradient. The cells in your body are busy doing work cycles all the time.

video

Introduction

Stuart Kauffman is a theoretical biologist who studies the origin of life and the origins of molecular organization. Thirty- five years ago, he developed the Kauffman models, which are random networks exhibiting a kind of self-organization that he terms "order for free." Kauffman is not easy. His models are rigorous, mathematical, and, to many of his colleagues, somewhat difficult to understand. A key to his worldview is the notion that convergent rather than divergent flow plays the deciding role in the evolution of life. He believes that the complex systems best able to adapt are those poised on the border between chaos and disorder.

Kauffman asks a question that goes beyond those asked by other evolutionary theorists: if selection is operating all the time, how do we build a theory that combines self-organization (order for free) and selection? The answer lies in a "new" biology, somewhat similar to that proposed by Brian Goodwin, in which natural selection is married to structuralism.

Lately, Kauffman says that he has been "hamstrung by the fact that I don't see how you can see ahead of time what the variables will be. You begin science by stating the configuration space. You know the variables, you know the laws, you know the forces, and the whole question is, how does the thing work in that space? If you can't see ahead of time what the variables are, the microscopic variables for example for the biosphere, how do you get started on the job of an integrated theory? I don't know how to do that. I understand what the paleontologists do, but they're dealing with the past. How do we get started on something where we could talk about the future of a biosphere?"

"There is a chance that there are general laws. I've thought about four of them. One of them says that autonomous agents have to live the most complex game that they can. The second has to do with the construction of ecosystems. The third has to do with Per Bak's self-organized criticality in ecosystems. And the fourth concerns the idea of the adjacent possible. It just may be the case that biospheres on average keep expanding into the adjacent possible. By doing so they increase the diversity of what can happen next. It may be that biospheres, as a secular trend, maximize the rate of exploration of the adjacent possible. If they did it too fast, they would destroy their own internal organization, so there may be internal gating mechanisms. This is why I call this an average secular trend, since they explore the adjacent possible as fast as they can get away with it. There's a lot of neat science to be done to unpack that, and I'm thinking about it."

—JB

STUART A. KAUFFMAN, a theoretical biologist, is emeritus professor of biochemistry at the University of Pennsylvania, a MacArthur Fellow and an external professor at the Santa Fe Institute. Dr. Kauffman was the founding general partner and chief scientific officer of The Bios Group, a company (acquired in 2003 by NuTech Solutions) that applies the science of complexity to business management problems. He is the author of The Origins of Order, Investigations, and At Home in the Universe: The Search for the Laws of Self-Organization.

Stuart Kauffman's Edge Bio Page


THE GENOME CHANGES EVERYTHING

Topic: 

  • LIFE
http://vimeo.com/79463916

"The substance of what I'm interested in is that it's the genes that are related to behavior, and how they work. The big insight is that genes are the agents of nurture as well as nature. Experience is a huge part of a developing human brain, the human mind, and a human organism. We need to develop in a social world and get things in from the outside. It's enormously important to the development of human nature. You can't describe human nature without it.

THE GENOME CHANGES EVERYTHING

[6.16.03]

The substance of what I'm interested in is that it's the genes that are related to behavior, and how they work. The big insight is that genes are the agents of nurture as well as nature. Experience is a huge part of a developing human brain, the human mind, and a human organism. We need to develop in a social world and get things in from the outside. It's enormously important to the development of human nature. You can't describe human nature without it. But that process is itself genetic, in the sense that there are genes in there designed to get the experience out of the world and into the organism. In the human case you're going to have genes that set up systems for learning that are not going to be present in other animals, language being the classic example. Language is something that in every sense is a genetic instinct. There's no question that human beings, unless they're unlucky and have a genetic mutation, inherit a capacity for learning language. That capacity is simply not inherited in anything like the same degree by a chimpanzee or a dolphin or any other creature. But you don't inherit the language; you inherit the capacity for learning the language from the environment.

video

Introduction

"For the first time in four billion years," says Matt Ridley, "a species on this planet has read its own recipe, or is in the process of reading its own recipe. That seems to me to be an epochal moment, because we're going to get depths of insight into the nature of human nature that we never could have imagined, and that will dwarf anything that philosophers and indeed scientists have managed to produce in the last two millennia."

Ridley is an original thinker with deep insights who is in the top ranks of people writing about science. He also happens to be an English aristocrat who lives in Newcastle-upon-Tyne in a stately home on beautiful grounds. He embodies the best of that English tradition in that he uses his prestige, influence and his resources in the interests of science. Such patronage, and I use the term in the good sense, includes founding, and serving as chairman of the International Centre for Life, Newcastle-upon-Tyne’s science park and visitor centre devoted to life science. The centre is highly regarded for its serious research in genetics.

—JB

MATT RIDLEY'S 23 pairs of chromosomes, together with a doctorate form Oxford University, equipped him for a career as a science journalist with The Economist and the Daily Telegraph. His books include Nature Via Nurture: Genes, Experience, and What Makes Us Human; Red Queen: Sex and the Evolution of Human Nature; Genome: The Autobiography of a Species in 23 Chapters; Origins of Virtue: Human Instincts and the Evolution of Cooperation; and editor of The Best American Science Writing 2002.

Matt Ridley's Edge Bio page

He is chairman of the International Centre for Life, Newcastle-upon-Tyne’s science park and visitor centre devoted to life science. He has ingeniously combined his chromosomes with those of his wife, the neuroscientist Dr Anya Hurlbert, to produce two entirely new human beings. His books have been shortlisted for six literary awards. He has been a scientist, a journalist, and a national newspaper columnist. He is also a visiting professor at Cold Spring Harbor Laboratory in New York.


Matt Ridley presents his latest book: Nature Via Nurture

Human nature is indeed a combination of Darwin's universals, Galton's heredity, James's instincts, De Vries's genes, Pavlov's reflexes, Watson's associations, Kraepelin's history, Freud's formative experience, Boas's culture, Durkheim's division of labor, Piaget's development, and Lorenz's imprinting. You can find all these things going on in the human mind. No account of human nature would be complete without them all .... But—and here is where I begin to tread new ground—it is entirely misleading to place these phenomena on a spectrum from nature to nurture, from genetic to environmental. Instead, to understand each and every one of them, you need to understand genes. It is genes that allow the human mind to learn, to remember, to imitate, to imprint, to absorb culture, and to express instincts. Genes are not puppet masters or blueprints. Nor are they just the carriers of heredity. They are active during life; they switch each other on and off; they respond to the environment. They may direct the construction of the body and brain in the womb, but then they set about dismantling and rebuilding what they have made almost at once—in response to experience. They are both cause and consequence of our actions. Somehow the adherents of the "nurture" side of the argument have scared themselves silly at the power and inevitability of genes and missed the greatest lesson of all: the genes are on their side.


A BOZO OF A BABOON

Topic: 

  • LIFE
http://vimeo.com/79464542

"For the humans who would like to know what it takes to be an alpha man—if I were 25 and asked that question I would certainly say competitive prowess is important—balls, translated into the more abstractly demanding social realm of humans. What's clear to me now at 45 is, screw the alpha male stuff. Go for an alternative strategy. Go for the social affiliation, build relationships with females, don't waste your time trying to figure out how to be the most adept socially cagy male-male competitor. Amazingly enough that's not what pays off in that system.

A BOZO OF A BABOON

[6.2.03]

For the humans who would like to know what it takes to be an alpha man—if I were 25 and asked that question I would certainly say competitive prowess is important—balls, translated into the more abstractly demanding social realm of humans. What's clear to me now at 45 is, screw the alpha male stuff. Go for an alternative strategy. Go for the social affiliation, build relationships with females, don't waste your time trying to figure out how to be the most adept socially cagy male-male competitor. Amazingly enough that's not what pays off in that system. Go for the affiliative stuff and bypass the male crap. I could not have said that when I was 25.

video

Introduction

While an undergraduate at Harvard, Robert Sapolsky asked himself: "Am I a neurobiologist? Am I a zoologist?" He has spent the past 25 years reconciling his interest in being a lab scientist using "a very reductive approach to figure out how the brain works" with his work in figuring out primate physiology and social behavior in East Africa.

These areas come together in his thesis that "moral development is very heavily built around...the frontal cortex". According to Sapolsky, this is "the part of the brain that keeps us from belching loudly during the wedding ceremony, or telling somebody exactly what we think of the meal they made, or being a serial murderer. It's the part of the brain that controls impulsivity, that accepts the postponement of gratification, that does constraint and anticipation, and that makes you work hard because you will get into an amazing nursing home one day if you just keep pushing hard enough. It's all about this very human realm of holding off for later". 

His ideas run counter to what he terms "a dogma of neural development... that by the time you're a couple of years old, you have your maximal number of neurons, and all of them are wired up and functioning". He maintains that "we make new neurons throughout life, and parts of the brain don't come fully on line until later. And, amazingly, the last area to do so is the frontal cortex, not until around age 30 or so. It's the last part of the brain to develop, and thus it's the part whose development is most subject to experience, environment, reinforcement, and the social world around you. That is incredibly interesting."

So what does this have to do with "a wonderful guy I named Benjamin. A total Bozo of a baboon"? Read on....

—JB

ROBERT SAPOLSKY is a professor of biological sciences at Stanford University and of neurology at Stanford's School of Medicine. He is also a research associate at the National Museums of Kenya. While his primary research, on stress and neurological disease, is in the laboratory, for twenty-three years he has made annual trips to the Serengeti of East Africa to study a population of wild baboons and the relationship between personality and patterns of stress-related disease in these animals. His latest book, A Primate's Memoir, grew out of the years spent in Africa. He is also the author of Stress, the Aging Brain, and the Mechanisms of Neuron Death, and two books for nonscientists, The Trouble With Testosterone and Other Essays on the Biology of the Human Predicament and Why Zebras Don't Get Ulcers: A Guide to Stress, Stress-Related Diseases and Coping.

Robert Sapolsky's Edge Bio Page


A UNITED BIOLOGY

Topic: 

  • LIFE
http://vimeo.com/79466105

"We're beginning to get some revolutionary new ideas about how social behavior originated, and also how to construct a superorganism. If we can define a set of assembly rules for superorganisms then we have a model system for how to construct an organism. How do you put an ant colony together? You start with a queen ant, which digs a hole in the ground, starts laying eggs, and goes through a series of operations that raise the first brood.

Pages

Subscribe to RSS - LIFE