UNIVERSE

THE LANDSCAPE

[12.2.03]

What we've discovered in the last several years is that string theory has an incredible diversity—a tremendous number of solutions—and allows different kinds of environments. A lot of the practitioners of this kind of mathematical theory have been in a state of denial about it. They didn't want to recognize it. They want to believe the universe is an elegant universe—and it's not so elegant. It's different over here. It's that over here. It's a Rube Goldberg machine over here. And this has created a sort of sense of denial about the facts about the theory. The theory is going to win, and physicists who are trying to deny what's going on are going to lose.

LEONARD SUSSKIND, the discoverer of string theory, is the Felix Bloch Professor in theoretical physics at Stanford University. His contributions to physics include the discovery of string theory, the string theory of black hole entropy, the principle of "black hole complementarity," the holographic principle, the matrix description of M-theory, the introduction of holographic entropy bounds in cosmology, the idea of an anthropic string theory "landscape." Leonard Susskind's Edge Bio Page

The Reality Club: Paul Steinhardt, Lee Smolin, Kevin Kelly, Alexander Vilenkin, Lenny Susskind, Steve Giddings, Lee Smolin, Gino Segre, Lenny Susskind, Gerard 't Hooft, Lenny Susskind, Maria Spiropulu

Introduction
by John Brockman

For some people, the universe is eternal. For me, it's breaking news.

Recently I sat down to talk with Lenny Susskind, the discoverer of string theory. After he left, I realized I had become so caught up in his story-telling that I forgot to ask him "what's new in the universe?" So I sent him an email. Here's his response...

~~~

The beginning of the 21st century is a watershed in modern science, a time that will forever change our understanding of the universe. Something is happening which is far more than the discovery of new facts or new equations. This is one of those rare moments when our entire outlook, our framework for thinking, and the whole epistemology of physics and cosmology are suddenly undergoing real upheaval. The narrow 20th-century view of a unique universe, about ten billion years old and ten billion light years across with a unique set of physical laws, is giving way to something far bigger and pregnant with new possibilities. 

Gradually physicists and cosmologists are coming to see our ten billion light years as an infinitesimal pocket of a stupendous megaverse. At the same time theoretical physicists are proposing theories which demote our ordinary laws of nature to a tiny corner of a gigantic landscape of mathematical possibilities.

This landscape of possibilities is a mathematical space representing all of the possible environments that theory allows. Each possible environment has its own laws of physics, elementary particles and constants of nature. Some environments are similar to our own corner of the landscape but slightly different. They may have electrons, quarks and all the usual particles, but gravity might be a billion times stronger. Others have gravity like ours but electrons that are heavier than atomic nuclei. Others may resemble our world except for a violent repulsive force (called the cosmological constant) that tears apart atoms, molecules and even galaxies. Not even the dimensionality of space is sacred. Regions of the landscape describe worlds of 5,6…11 dimensions. The old 20th century question, "What can you find in the universe?" is giving way to "What can you not find?"

The diversity of the landscape is paralleled by a corresponding diversity in ordinary space. Our best theory of cosmology called inflationary cosmology is leading us, sometimes unwillingly, to a concept of a megaverse, filled with what Alan Guth, the father of inflation, calls "pocket universes." Some pockets are small and never get big. Others are big like ours but totally empty. And each lies in its own little valley of the landscape.

Man’s place in the universe is also being reexamined and challenged. A megaverse that diverse is unlikely to be able to support intelligent life in any but a tiny fraction of its expanse. Many of the questions that we are used to asking such as 'Why is a certain constant of nature one number instead of another?' will have very different answers than what physicists had hoped for. No unique value will be picked out by mathematical consistency, because the landscape permits an enormous variety of possible values. Instead the answer will be "Somewhere in the megaverse the constant is this number, and somewhere else it is that. And we live in one tiny pocket where the value of the constant is consistent with our kind of life. That’s it! There is no other answer to that question."

The kind of answer that this or that is true because if it were not true there would be nobody to ask the question is called the anthropic principle. Most physicists hate the anthropic principle. It is said to represent surrender, a giving up of the noble quest for answers. But because of unprecedented new developments in physics, astronomy and cosmology these same physicists are being forced to reevaluate their prejudices about anthropic reasoning. There are four principal developments driving this sea change. Two come from theoretical physics, and two are experimental or observational.

On the theoretical side, an outgrowth of inflationary theory called eternal inflation is demanding that the world be a megaverse full of pocket universes that have bubbled up out of inflating space like bubbles in an uncorked bottle of Champagne. At the same time string theory, our best hope for a unified theory, is producing a landscape of enormous proportions. The best estimates of theorists are that 10500 distinct kinds of environments are possible.

Very recent astronomical discoveries exactly parallel the theoretical advances. The newest astronomical data about the size and shape of the universe convincingly confirm that inflation is the right theory of the early universe. There is very little doubt that our universe is embedded in a vastly bigger megaverse.

But the biggest news is that in our pocket the notorious cosmological constant is not quite zero, as it was thought to be. This is a cataclysm and the only way that we know how to make any sense of it is through the reviled and despised anthropic principle.

I don’t know what strange and unimaginable twists our view of the universe will undergo while exploring the vastness of the landscape. But I would bet that at the turn of the 22nd century, philosophers and physicists will look back nostalgically at the present and recall a golden age in which the narrow provincial 20th century concept of the universe gave way to a bigger better megaverse, populating a landscape of mind-boggling proportions.

~~~

Below is a wide ranging discussion with Lenny. "To this day," he says, "the only real physics problem that has been solved by string theory is the problem of black holes. It led to some extremely revolutionary and strange ideas."

"Up to now string theory has had nothing to say about cosmology. Nobody has understood the relationship between string theory and the Big Bang, inflation, and other aspects of cosmology. I frequently go to conferences that often have string theorists and cosmologists, and usually the string theory talks consist of apologizing for the fact that they haven't got anything interesting to tell the cosmologists. This is going to change very rapidly now because people have recognized the enormous diversity of the theory."

Read on...

—JB


THE LANDSCAPE

Topic: 

  • UNIVERSE
http://vimeo.com/79421595

"What we've discovered in the last several years is that string theory has an incredible diversity—a tremendous number of solutions—and allows different kinds of environments. A lot of the practitioners of this kind of mathematical theory have been in a state of denial about it. They didn't want to recognize it. They want to believe the universe is an elegant universe—and it's not so elegant. It's different over here. It's that over here. It's a Rube Goldberg machine over here. And this has created a sort of sense of denial about the facts about the theory.

THE MAKING OF A PHYSICIST

[6.30.03]

 

MURRAY GELL-MANN
September 15, 1929 – May 24, 2019

Uncharacteristically, I discussed my application to Yale with my father, who asked, "What were you thinking of putting down?" I said, "Whatever would be appropriate for archaeology or linguistics, or both, because those are the things I'm most enthusiastic about. I'm also interested in natural history and exploration."

He said, "You'll starve!"

After all, this was 1944 and his experiences with the Depression were still quite fresh in his mind; we were still living in genteel poverty. He could have quit his job as the vault custodian in a bank and taken a position during the war that would have utilized his talents — his skill in mathematics, for example — but he didn't want to take the risk of changing jobs. He felt that after the war he would regret it, so he stayed where he was. This meant that we really didn't have any spare money at all.

I asked him, "What would you suggest?"

He mentioned engineering, to which I replied, "I'd rather starve. If I designed anything it would fall apart." And sure enough when I took an aptitude test a year later I was advised to take up nearly anything but engineering.

Then my father suggested, "Why don't we compromise — on physics?"

Edge is pleased to bring you a conversation (and video) with Murray Gell-Mann conducted in SantaFe over the Christmas holiday in 2003 — in which he conveyed "something about his life and his attitude toward the world and toward physics."

— JB

MURRAY GELL-MANN (September 15, 1929 – May 24, 2019) was a theoretical physicist and, until his death, Robert Andrews Millikan Professor Emeritus of Theoretical Physics at the California Institute of Technology; winner of the 1969 Nobel Prize in physics; a cofounder of the Santa Fe Institute, where he is a Distinguished Fellow; a former director of the J.D. and C.T. MacArthur Foundation; one of the Global Five Hundred honored by the U.N. Environment Program; a former Citizen Regent of the Smithsonian Institution; a former member of the President's Committee of Advisors on Science and Technology; and the author of The Quark and the Jaguar: Adventures in the Simple and the Complex.

Murray Gell-Mann's Edge Bio Page


 

EINSTEIN AND POINCARE

[6.22.03]

"I'm interested in bending the edges of the spectrum to make the abstract and the concrete hit one another more directly."

video

Introduction

 

Peter Galison, Professor of the History of Science and of Physics at Harvard, asks how Poincaré and Einstein "could have radically reformulated our ideas of time and space by looking at the way that philosophically abstract concerns, physics concerns, and ... technological problems of keeping trains from bashing into each other and coordinating mapmaking across the empires might fit into a single story."

Regarding Einstein’s and Poincaré’s account of simultaneity, he wonders: "Is it really physics, or fundamentally technology, or does it come down to philosophy?" He calls it "an extraordinary moment when philosophy, physics and technology cross, precisely because of the intersection of three very powerful streams of action and reasoning at the turn of the century."

This moment resonates with many recent discussions on Edge, and to what Galison terms "the collection of sciences that have grown up around computation. Here, ideas about the mind, about how computers function, and about science, codes, and mathematical physics all come together. Von Neumann thinks about the mind and its organs (memory, input-output, processing) as a way of designing a programmed computer. The programmed computer then becomes a model for the mind. The ideas of information, which are encoded into the development of computation, also become ways to understand language and communication more generally, and again feed back into devices. Information, entropy, and computation become metaphors for us at a much broader level."

Convergences such as Einstein’s and Poincaré’s account of simultaneity or new the sciences of computation are "opalescent moments" that "point to science in times and places where we’re starting to think with and through machines at radically different scales—Where we are flipping back and forth between abstraction and concreteness so intensively that they illuminate each other in fundamentally novel ways, in ways not captured by models of simple evaporation or condensation. When we see such opalescence, we should dig into them, and deeply, for they are transformative moments of our cultures."

JB

PETER GALISON is the Mallinckrodt Professor of the History of Science and of Physics at Harvard University and the author of How Experiments End; Image and Logic; and Einstein's Clocks and Poincaré's Maps: Empires of Time.

Two collections of interpretive essays have been published about Image and Logic, which also won the Pfizer Prize for Best Book in the History of Science. For his work on these books he was awarded a MacArthur Fellowship in 1997, and a Max Planck Prize by the Max Planck Gesellschaft and Humboldt Stiftung in 1999.

Peter Galison's Edge Bio page

Peter Galison presents his new book: Einstein's Clocks and Poincaré's Maps: Empires of Time:

True time would never be revealed by mere clocks—of this Newton was sure. Even a master clockmaker's finest work would offer only pale reflections of the absolute time that belonged not to our human world, but to the "sensorium of God." Tides, planets, moons—everything changed, Newton believed, against the universal background of a single, constantly flowing river of time. In Einstein's electro-technical world, there was no place for such a "universally audible tick-tock" that we can call time, no way to define time meaningfully except in reference to a definite system of linked clocks...Two events simultaneous for a clock-observer at rest are not simultaneous for one in motion. With that shock, the foundation of Newtonian physics cracked; Einstein knew it. Late in life, he interrupted his autobiographical notes to apostrophize Sir Isaac as if the intervening centuries had vanished; reflecting on the absolutes of space and time that his theory of relativity had shattered, Einstein wrote: "Newton, forgive me; you found the only way which, in your age, was just about possible for a man of highest thought and creative power."...At the heart of this radical upheaval in time lay an extraordinary yet easily stated idea that has remained dead-center in physics, philosophy, and technology ever since: To talk about simultaneity, you have to synchronize clocks with a flash from one clock to another, adjusting for the time that the flash takes to arrive. What could be simpler? Yet with this definition of time, the last piece of the relativity puzzle fell into place, changing physics forever.


IN THE MATRIX

Topic: 

  • UNIVERSE
http://vimeo.com/79462677

"All these multiverse ideas lead to a remarkable synthesis between cosmology and physics...But they also lead to the extraordinary consequence that we may not be the deepest reality, we may be a simulation. The possibility that we are creations of some supreme, or super-being, blurs the boundary between physics and idealist philosophy, between the natural and the supernatural, and between the relation of mind and multiverse and the possibility that we're in the matrix rather than the physics itself."

IN THE MATRIX

[5.17.03]

All these multiverse ideas lead to a remarkable synthesis between cosmology and physics...But they also lead to the extraordinary consequence that we may not be the deepest reality, we may be a simulation. The possibility that we are creations of some supreme, or super-being, blurs the boundary between physics and idealist philosophy, between the natural and the supernatural, and between the relation of mind and multiverse and the possibility that we're in the matrix rather than the physics itself.

video

Introductory Remarks

Cosmology and astrophysics are branches of physics in which one needs an unusual combination of breadth and depth to excel. Martin Rees is arguably the finest all-round theoretical physicist working today. I do not always agree with him—especially in areas outside physics itself—but I always want to know his opinion. As does every wise person.
—David Deutsch

I have known and admired Martin Rees since the early 1970's when we were postdocs together at Cambridge University. Even at that stage Martin's extraordinary breadth of knowledge and expertise were apparent. Pick almost any topic in astronomy or physics, and he would have a carefully evaluated position worked out. He is one of only a few great scientists who is both open-minded and healthily-skeptical. At a time in his career when he could justifiably rest on his laurels, Martin Rees is as energetic and active as ever, offering stunning insights into many emerging scientific fields.
— Paul Davies

Martin Rees one of the most influential people working in astrophysical and cosmological theory. He is simultaneously open to new ideas and suggestions and careful and rigorous in his response and criticisms. Also, it's difficult to suggest an idea about the evolution of structure in the universe or the formation of the galaxies that he hasn't thought of or played with or perhaps even written about at some time. Much of the credit for what I like to think of as the discovery that the laws of nature are special in ways that allow the universe to be very structured is due to him.
—Lee Smolin

Martin Rees is my favorite theoretical astrophysicist. He is not only incredibly knowledgeable, but he is also wonderfully helpful to his colleagues. He has contributed over 500 papers to the scientific literature, making important contributions to almost every aspect of astrophysics. He is especially well-known for his work on galaxy formation and the theory of cold dark matter, and also for his work on active galactic nuclei and the black holes that are believed to drive them.
—Alan Guth

There are two types of cosmologists active today: those who seek the physical principles driving the global properties of the Universe, and those who concentrate on the details of astrophysical objects, like galaxies, quasars, and black holes, that give complementary information about structure at smaller distances. Martin Rees is one of the few cosmologists exploring both venues, giving him a unique perspective from which to develop scientific ideas, and to synthesize known ideas for a broader audience. He always has something
interesting to say.
—Lisa Randall


SIR MARTIN REES is Royal Society Professor at Cambridge University, Fellow of King's College, the UK's Astronomer Royal, and a Fellow of the Royal Society. He was previously Plumian Professor of Astronomy and Experimental Philosophy at Cambridge, having been elected to this chair at the age of thirty, succeeding Fred Hoyle. He has originated many key cosmological ideas: for example, he was the first to suggest that the fantastically energetic cores of quasars may be powered by giant black holes. For the last twenty years, he has directed a wide-ranging research program at Cambridge's Institute of Astronomy.

He is the author of several books, including Gravity's Fatal Attraction (with Mitchell Begelman); New Perspectives in Astrophysical Astronomy; Before the Beginning: Our Universe and Others; Just Six Numbers: The Deep Forces that Shape the Universe; Our Cosmic Habitat; and Our Final Hour: A Scientist's Warning: How Terror, Error, and Environmental Disaster Threaten Humankind's Future in this Century—on Earth and Beyond (published in the UK as Our Final Century: The 50/50 Threat to Humanity's Survival).

Martin Rees' Edge Bio page 

David Deutsch's Edge Bio Page
Paul Davies' Edge Bio Page
Lee Smolin's Edge Bio Page
Alan Guth's Edge Bio Page
Lisa Randall 's Edge Bio Page 

WHO CARES ABOUT FIREFLIES?

Topic: 

  • UNIVERSE
http://vimeo.com/79465151

"We see fantastic examples of synchrony in the natural world all around us. To give a few examples, there were persistent reports when the first Western travelers went to southeast Asia, back to the time of Sir Francis Drake in the 1500s, of spectacular scenes along riverbanks, where thousands upon thousands of fireflies in the trees would all light up and go off simultaneously. These kinds of reports kept coming back to the West, and were published in scientific journals, and people who hadn't seen it couldn't believe it.

WHO CARES ABOUT FIREFLIES?

[5.10.03]

We see fantastic examples of synchrony in the natural world all around us. To give a few examples, there were persistent reports when the first Western travelers went to southeast Asia, back to the time of Sir Francis Drake in the 1500s, of spectacular scenes along riverbanks, where thousands upon thousands of fireflies in the trees would all light up and go off simultaneously. These kinds of reports kept coming back to the West, and were published in scientific journals, and people who hadn't seen it couldn't believe it. Scientists said that this is a case of human misperception, that we're seeing patterns that don't exist, or that it's an optical illusion. How could the fireflies, which are not very intelligent creatures, manage to coordinate their flashings in such a spectacular and vast way?

video

Introduction by Alan Alda

Steve Strogatz has worked all his life studying something that some people thought didn’t exist while others thought was too obvious to mention.

It’s found in that subtle region—the haze on the horizon—that smart people, it seems, have always been intrigued by. He saw something there, and went and looked closer.

What drew him on was a pattern in Nature that showed, surprisingly, that an enormous number of things sync up spontaneously. His research covered a wide range of phenomena, from sleep patterns to heart rhythms to the synchronous pulse of Asian fireflies. And now, in his new book, Sync, he’s drawn all these strands (and many others) together in a way that has the shock of the new. Even though we may see the moon every night (perhaps not realizing it’s an example of sync) it’s hard not to be surprised at the number of things around us—and in us—that must (or must not) sync up for things to go right. 

I’ve known Steve about ten years. We met when I called him up on the phone, wondering if he’d even take my call. I had read an article of his in Scientific American about coupled oscillators. From his first description of Huygens’ discovery that pendulum clocks would sync up if they could sense each other’s vibrations, I was fascinated, and I hoped he’d tell me more about it. He was surprisingly generous in the face of my hungry, naive curiosity and we’ve been friends ever since. 

Steve has that quality, like Richard Feynman’s of not only wanting to make every complex thought clear to the average person, but, also like Feynman, of actually knowing how. When we were working on the Broadway play QED, by Peter Parnell, in which I played Feynman, it’s no surprise that we asked Steve to advise us on the physics in the piece.

Please let me introduce you to Steven Strogatz, Professor of Applied Mathematics at Cornell University: my pal, Steve.

—Alan Alda

 

STEVEN STROGATZ is a professor in the Department of Theoretical and Applied Mechanics and the Center for Applied Mathematics at Cornell University. He is the author of the best selling textbook Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering and the trade book Sync: The Emerging Science of Spontaneous Order.

His seminal research on human sleep and circadian rhythms, scroll waves, coupled oscillators, synchronous fireflies, Josephson junctions, and small-world networks has been featured in Nature, Science, Scientific American, the New York Times, US News and World Report, New Yorker, Discover, American Scientist, Science News, Newsweek, Die Zeit, and London's Daily Telegraph, and broadcast on BBC Radio, National Public Radio, CBS News, and numerous other mass media outlets.

Steven Strogatz's Edge Bio Page
Alan Alda's Edge Bio Page 

Who Cares About Fireflies? from Edge Foundation on Vimeo.

Pages

Subscribe to RSS - UNIVERSE