UNIVERSE

Curtains For Us All?

Topic: 

  • UNIVERSE
https://vimeo.com/214719867

Here on Earth, I suspect that we are going to want to regulate the application of genetic modification and cyborg techniques on grounds of ethics and prudence. This links with another topic I want to come to later, which is the risks of new technology. If we imagine these people living as pioneers on Mars, they are out of range of any terrestrial regulation. Moreover, they've got a far higher incentive to modify themselves or their descendants to adapt to this very alien and hostile environment.                                 

Curtains For Us All?

[5.31.17]
Here on Earth, I suspect that we are going to want to regulate the application of genetic modification and cyborg techniques on grounds of ethics and prudence. This links with another topic I want to come to later about the risks of new technology. If we imagine these people living as pioneers on Mars, they are out of range of any terrestrial regulation. Moreover, they've got a far higher incentive to modify themselves or their descendants to adapt to this very alien and hostile environment.                                 
 
They will use all the techniques of genetic modification, cyborg techniques, maybe even linking or downloading themselves into machines, which, fifty years from now, will be far more powerful than they are today. The posthuman era is probably not going to start here on Earth; it will be spearheaded by these communities on Mars. 
 
LORD MARTIN REES is a Fellow of Trinity College and Emeritus Professor of Cosmology and Astrophysics at the University of Cambridge. He is the UK's Astronomer Royal and a Past President of the Royal Society. Martin Rees's Edge Bio Page

Sounds of the Skies

Hear the Spacetime Ringing
[3.23.16]

The effect of these gravitational waves is to squeeze and stretch space. If you were floating near these black holes, you would literally be squeezed and stretched. If you were close enough, you would feel the difference between the squeezing and stretching on your face or your feet. We’ve even conjectured that your eardrum could ring in response, like a resonant membrane, so that you would literally hear the wave, hear it even in the absence of a medium like air. Even though we think that empty space is silent, in these circumstances you would hear the black holes collide but you wouldn’t see them; it would happen in complete darkness. The two black holes would be completely dark, and your only evidence of their collision would be to hear the spacetime ringing.

JANNA LEVIN is a professor of physics and astronomy at Barnard College of Columbia University. She is the author of How the Universe Got Its Spots; A Madman Dreams of Turing Machines; and most recently, Black Hole Blues and Other Songs from Outer SpaceJanna Levin's Edge Bio Page 

Sounds of the Skies

Topic: 

  • UNIVERSE
https://vimeo.com/158402092

The effect of these gravitational waves is to squeeze and stretch space. If you were floating near these black holes, you would literally be squeezed and stretched. If you were close enough, you would feel the difference between the squeezing and stretching on your face or your feet. We’ve even conjectured that your eardrum could ring in response, like a resonant membrane, so that you would literally hear the wave, hear it even in the absence of a medium like air.

THE UNIVERSE

[3.10.16]


  Best Sellers

   March 27, 2016

  E-BOOK NONFICTION

  • #9 UNIVERSE, by John Brockman. (Harper Perennial.) Physicists and science writers explain the universe.

Cover
[click to buy]

 
CONTENTS: A Golden Age of Cosmology Alan Guth  The Cyclic Universe Paul Steinhardt  A Balloon Producing Balloons Producing Balloons Andrei Linde  Theories of the Brane Lisa Randall  The Cyclic Universe Neil Turok  Why Does the Universe Look the Way It Does? Sean Carroll  In the Matrix Martin Rees  Think About Nature Lee Smolin  The Landscape Leonard Susskind  Smolin vs. Susskind: The Anthropic Principle Lee Smolin, Leonard Susskind  Science Is Not About Certainty Carlo Rovelli  The Energy of Empty Space That Isn't Zero Lawrence Krauss  Einstein: An Edge Symposium Brian Greene, Walter Isaacson, Paul Steinhardt  Einstein and Poincaré  Peter Galison  Thinking About the Universe on the Larger Scales Raphael Bousso Quantum Monkeys Seth Lloyd  The Nobel Prize and After Frank Wilczek  Who Cares About Fireflies? Steven Strogatz  Constructor Theory David Deutsch  A Theory of Roughness Benoit Mandelbrot (with an introduction by John Brockman)   

The Exquisite Role of Dark Matter

[6.10.15]

It is definitely the golden age in cosmology because of this unique confluence of ideas and instruments. We live in a very peculiar universe—one that is dominated by dark matter and dark energy—the true nature of both of these remains elusive. Dark matter does not emit radiation in any wavelength and its presence is inferred by its gravitational influence on the motions of stars and gas in its vicinity. Dark Energy, discovered in 1998, meanwhile is believed to be powering the accelerated expansion of the universe. Despite not knowing what the dark matter particle is or what dark energy really is, we still have a very successful theory of how galaxies form and evolve in a universe with these mysterious and invisible dominant components. Technology has made possible the testing of our cosmological theories at a level that was unprecedented before. All of these experiments have delivered very exciting results, even if they're null results. For example, the LHC, with the discovery of the Higgs, has given us a lot more comfort in the standard model. The Planck and WMAP satellites probing the leftover hiss from the Big Bang—the cosmic microwave background radiation—have shown us that our theoretical understanding of how the early fluctuations in the universe grew and formed the late universe that we see is pretty secure. Our current theory, despite the embarrassing gap of not knowing the true nature of dark matter or dark energy, has been tested to a pretty high degree of precision.                      

It's also consequential that the dark matter direct detection experiments have not found anything. That's interesting too, because that's telling us that all these experiments are reaching the limits of their sensitivity, what they were planned for, and they're still not finding anything. This suggests paradoxically that while the overall theory might be consistent with observational data, something is still fundamentally off and possibly awry in our understanding. The challenge in the next decade is to figure out which old pieces don't fit. Is there a pattern that emerges that would tell us, is it a fundamentally new theory of gravity that's needed, or is it a complete rethink of some aspects of particle physics that are needed? Those are the big open questions.

PRIYAMVADA NATARAJAN is a professor in the Departments of Astronomy and Physics at Yale University, whose research is focused on exotica in the universe—dark matter, dark energy, and black holes. Priyamvada Natarajan's Edge Bio Page 


THE EXQUISITE ROLE OF DARK MATTER

I'm a theoretical astrophysicist, working on what I think are some of the most exciting, open and challenging questions. The first is trying to understand the nature of dark matter, and the second question pertains to the physics of black holes. Part of my interest in these two questions, aside from the fact that we now have an enormous amount of data that can help us understand these very enigmatic objects in the universe, is that we have a standard theory—a theoretical model—that works extremely well.

This is a model of structure formation in which dark matter, which is the dominant matter component in the universe, is in the driving seat. It's the scaffolding in which all the first galaxies form, the first stars form, and so on. While we have this exquisite inventory and role for dark matter, we do not know what it is, what it's composed of, what kind of particle it is, when it was created in the universe, and so on and so forth. Similarly, with black holes; we know that they exist. They are real. There is one in the center of our galaxy, which is a few million times the mass of the sun. The one in the center of our galaxy is a dormant black hole. It's not doing very much at present, it was likely active in the past. We see in the early universe that there are massive black holes that are 1000 times, 10,000 times more massive than the one in the center of the galaxy that play a very important role in shaping the properties of the galaxy which hosts them.

What is the life-story of a black hole? How do they grow? How do they form, evolve, and then end up as dead black holes? This is an open question because we know that black holes feed on gas, but what we don't understand is precisely how the gas makes it onto this peculiar surface that all black holes have called the "event horizon." The physics, the astrophysics, if you will, or the details of the flow, are very poorly understood. Once again, these are both problems where we have a good, in fact, a rather specialized, detailed broad-brush understanding; however, the very nature of these objects remains unknown. The situation is very similar to that of dark matter that appears to be ubiquitous.

The Exquisite Role of Dark Matter

Topic: 

  • UNIVERSE
https://vimeo.com/129461640

It is definitely the golden age in cosmology because of this unique confluence of ideas and instruments. We live in a very peculiar universe—one that is dominated by dark matter and dark energy—the true nature of both of these remains elusive. Dark matter does not emit radiation in any wavelength and its presence is inferred by its gravitational influence on the motions of stars and gas in its vicinity. Dark Energy, discovered in 1998, meanwhile is believed to be powering the accelerated expansion of the universe.

Layers Of Reality

Topic: 

  • UNIVERSE
https://vimeo.com/126636819

We know there's a law of nature, the second law of thermodynamics, that says that disorderliness grows with time. Is there another law of nature that governs the complexity of what happens? That talks about multiple layers of the structures and how they interact with each other? Embarrassingly enough, we don't even know how to define this problem yet. We don't know the right quantitative description for complexity. This is very early days. This is Copernicus, not even Kepler, much less Galileo or Newton. This is guessing at the ways to think about these problems.

Layers Of Reality

[5.28.15]

We know there's a law of nature—the second law of thermodynamics—that says that disorderliness grows with time. Is there another law of nature that governs the complexity of what happens? That talks about multiple layers of the structures and how they interact with each other? Embarrassingly enough, we don't even know how to define this problem yet. We don't know the right quantitative description for complexity. This is very early days. This is Copernicus, not even Kepler, much less Galileo or Newton. This is guessing at the ways to think about these problems.

SEAN CARROLL is a research professor at Caltech and the author of The Particle at the End of the Universe, which won the 2013 Royal Society Winton Prize, and From Eternity to Here: The Quest for the Ultimate Theory of Time. He has recently been awarded a Guggenheim Fellowship, the Gemant Award from the American Institute of Physics, and the Emperor Has No Clothes Award from the Freedom From Religion Foundation. Sean Carroll's Edge Bio Page

Formulating Science in Terms of Possible and Impossible Tasks

[12.6.14]

It turns out that in the constructor theoretic view, humans, as knowledge creating systems, are quite central to fundamental physics in an objective, non-anthropocentric, way. This is a very deep change in perspective. One of the ideas that will be dropped if constructor theory turns out to be effective is that the only fundamental entities in physics are laws of motion and initial conditions. In order for physics to accommodate more of physical reality, there needs to be a switch to this new mode of explanation, which accepts that scientific explanation is more than just predictions. Predictions will be supplemented with statements about what tasks are possible, what are impossible and why.

CHIARA MARLETTO is a Junior Research Fellow at Wolfson College and Postdoctoral Research Assistant at the Materials Department, University of Oxford; Currently working with David Deutsch. Chiara Marletto's Edge Bio Page

THE REALITY CLUB: NEW Arnold Trehub


FORMULATING SCIENCE IN TERMS OF POSSIBLE AND IMPOSSIBLE TASKS 

I’ve been thinking about constructor theory a lot in the past few years. Constructor theory is this theory that David Deutsch proposed—a proposal for a new fundamental theory to formulate science in a completely different way from the prevailing conception of fundamental physics. It has the potential to change the way we formulate science because it’s a new mode of explanation.

When you think about physics, you usually describe things in terms of initial conditions and laws of motion; so what you say is, for example, where a comet goes given that it started in a certain place and time. In constructor theory, what you say is what transformations are possible, what are impossible, and why. The idea is that you can formulate the whole of fundamental physics this way; so, not only do you say where the comet goes, you say where it can go. This incorporates a lot more than what it is possible to incorporate now in fundamental physics.

Pages

Subscribe to RSS - UNIVERSE