UNIVERSE

Next Step Infinity

[8.9.11]

 Infinity can violate our human intuition, which is based on finite systems, and create perplexing philosophical problems.

 




ANTHONY AGUIRRE holds a BS (1995) in mathematics and physics from Brown University and a PhD (2000) in astronomy from Harvard University. He is an associate professor of physics at the University of California, Santa Cruz, where he studies a variety of topics in theoretical cosmology, including the early universe and inflation, gravity physics, first stars, the intergalactic medium, galaxy formation, and black holes.

Excerpted from Future Science: Essays From The Cutting Edge, Edited by Max Brockman (Vintage Books, 2011)


[ANTHONY AGUIRRE:] The question of whether the world is finite or infinite has bedeviled us for a long time. It was a classic question in ancient Indian     philosophy. Aristotle cogently argued that while infinity made sense in the “potential,” the world could not “actually” be infinite. Giordano Bruno declared the world infinite and was burned at the stake. Galileo, more circumspect, had his clever alter ego, Salviati, completely befuddle Simplicio with how paradoxical and slippery infinity is. And Immanuel Kant really threw down the gauntlet, arguing that both an infinite and a finite world were logically impossible: an infinite universe would take an infinite time to be “synthesized” and thus could never at any one time be said to be infinite—but a finite universe must somehow be embedded in a seemingly meaningless “emptiness” that is not part of the universe. Because finite and infinite spaces alike tax our conception of space, and because we, as finite creatures, clearly cannot measure or directly observe an infinite system, it might appear that the question could most conveniently be consigned to the dustheap of purely philosophical inquiries that hard-nosed scientists can safely ignore.

Yet Albert Einstein’s theories of space and time radically reformulated the questions of finite and infinite spaces and times, and the ensuing development of cosmology has brought infinity into the domain of testable physical science. For example, a uniform space can be curved like a sphere—and comprise a universe that is finite in volume without having any “edge” or empty space outside it. Even more impressive are the tricks that relativity can play concerning infinite spaces, which have come to occupy a central place in contemporary cosmology. To tell this story, I will contend in the following four sections of this essay that:

WHY CITIES KEEP GROWING, CORPORATIONS AND PEOPLE ALWAYS DIE, AND LIFE GETS FASTER

[5.23.11]

 

The question is, as a scientist, can we take these ideas and do what we did in biology, at least based on networks and other ideas, and put this into a quantitative, mathematizable, predictive theory, so that we can understand the birth and death of companies, how that stimulates the economy?  

 


THE REALITY CLUB: Jennifer Jacquet, Emanuel Derman, Richard Saul Wurman

Introduction
By John Brockman

For the past few years Geoffrey West, a physicist former president of SantaFe Institute  has been calling for "a science of how city growth affects society and environment". 

After years of focusing on scalability of cities and urban environments, West, is now is bringing "some of the powerful techniques, ideas, and paradigms developed in physics over into the biological and social sciences". He is looking at a bigger picture and asking the following question: "to what extent can biology and social organization (which are both quintessential complex adaptive systems) be put in a more quantitative, analytic, mathemitizable, predictive framework so that we can understand them in the way that we understand 'simple physical systems'?'

West interprets. He speculates. …

The great thing about cities, the thing that is amazing about cities is as they grow, so to speak, their dimensionality increases. That is, the space of opportunity, the space of functions, the space of jobs just continually increases. And the data shows that. If you look at job categories, it continually increases. I'll use the word "dimensionality."  It opens up. And in fact, one of the great things about cities is that it supports crazy people. You walk down Fifth Avenue, you see crazy people. There are always crazy people. Well, that's good. Cities are tolerant of extraordinary diversity. ...

WHY CITIES KEEPING GROWING, CORPORATIONS AND PEOPLE ALWAYS DIE, AND LIFE GETS FASTER

Topic: 

  • UNIVERSE
http://vimeo.com/83538756

"The question is, as a scientist, can we take these ideas and do what we did in biology, at least based on networks and other ideas, and put this into a quantitative, mathematizable, predictive theory, so that we can understand the birth and death of companies, how that stimulates the economy?"

WHEN WE CANNOT PREDICT

An Edge Special Event!
[3.25.11]

Introduction

About a year ago, on Wednesday April 14th, I was on the way to London from JFK, when the pilot announced a slight delay into Heathrow in order to avoid the ash cloud coming out of the Icelandic volcano eruption. This was the first time I paid any attention to the subject. But once in London that is the only subject anybody talked about for a week.

"Something is going on here that requires serious thinking," I wrote on these pages. "We've had earthquakes before, and we've had plane stoppages, but nothing like the continuing effects of the ash cloud." The result was an Edge Special event on "The Ash Cloud". I asked the following question:

"What do the psychologists have to say about the way the decision-makers have acted? What have the behavioral economists learned from this? I am interested in hearing from the earth and atmospheric scientists, the aeronautical engineers, the physicists. What can science bring to the table?"

It's already clear that the earthquake and tsunami that hit northern Japan is the latest tragic example of our inability to predict when it matters most.

What can the Edge community bring to the table?

"Risks are always interesting," writes George Dyson," especially in this case where you have such a mix of probabilities — the earthquake/tsunami that most agree was unpredictable, if inevitable, and the nuclear power plant that some people think was entirely safe, and some people believe was entirely unsafe. So you need to frame this in terms of risk, without getting bogged down in the debate about nuclear power, that may go on forever, certainly long enough to drive people away from Edge."

"The question of preference for different kinds of fate — death by drowning vs death by radiation; death by enemy fire vs friendly fire, etc; tolerance for automobile fatalities because they are "accidents" — is at the heart of this, and you have a lot of people at hand with something to say about that."

To start things off, Edge asked Bruce Parker, Former Chief Scientist of the National Ocean Service in NOAA, and author of The Power of the Sea, to write the lede essay on risk in light of northern Japan earthquake and tsunami.

John Brockman
Publisher & Editor, Edge

IN MEMORY OF BENOIT MANDELBROT: 1924 - 2010

[12.19.10]

To remember and to honor Benoit Mandelbrot, Edge is pleased to present several pieces:

"A Theory of Roughness: A Talk with Benoit Mandelbrot", an Edge feature which previously ran on December 20, 2004

Response to the 2005 Edge Question, "What Do You Believe Is True Even Though You Cannot Prove It?

"A remembrance on behalf of the Edge community by Dimitar Sasselov;

"Benoit's Dangerous Life" by George Dyson

"The Father of Long Tails", a 2008 interview conducted in Paris by the Swiss art curator andEdge collaborator Hans Ulrich Obrist, currently the Curator of the Serpentine Gallery in London.

Response to the Edge-Serpentine Gallery collaboration "Formulae For The 21St Century: What Is Your Formula? Your Equation? Your Algorithm?"

Photograph: Budapest, 2003. "Benoit's Dangerous Life": A report on the photograph by George Dyson

Photograph: With John Brockman, Cambridge, Massachusetts, December 29, 2010

BENOIT MANDELBROT, who died on October 14th, was Sterling Professor of Mathematical Sciences at Yale University and IBM Fellow Emeritus (Physics) at the IBM T.J. Watson Research Center. His books include The Fractal Geometry of Nature; Fractals and Scaling in Finance; and (with Richard L. Hudson) The (mis)Behavior of Markets.


A THEORY OF ROUGHNESS [12.20.04]

A Talk with Benoit Mandelbrot

 

A recent, important turn in my life occurred when I realized that something that I have long been stating in footnotes should be put on the marquee. I have engaged myself, without realizing it, in undertaking a theory of roughness. Think of color, pitch, loudness, heaviness, and hotness. Each is the topic of a branch of physics. Chemistry is filled with acids, sugars, and alcohols — all are concepts derived from sensory perceptions. Roughness is just as important as all those other raw sensations, but was not studied for its own sake.

 

 

Introduction

By John Brockman

During the 1980s Benoit Mandelbrot accepted my invitation to give a talk before The Reality Club. The evening was the toughest ticket in the 10-year history of live Reality Club events during that decade: it seemed like every artist in New York had heard about it and wanted to attend. It was an exciting, magical evening. I've stayed in touch with Mandelbrot and shared an occasional meal with him every few years, always interested in what he has to say. Recently, we got together prior to his 80th birthday.

Mandelbrot is best known as the founder of fractal geometry which impacts mathematics, diverse sciences, and arts, and is best appreciated as being the first broad attempt to investigate quantitatively the ubiquitous notion of roughness.

And he continues to push the envelope with his theory of roughness. "There is a joke that your hammer will always find nails to hit," he says. "I find that perfectly acceptable. The hammer I crafted is the first effective tool for all kinds of roughness and nobody will deny that there is at least some roughness everywhere."

"My book, The Fractal Geometry of Nature," he says, reproduced Hokusai's print of the Great Wave, the famous picture with Mt. Fuji in the background, and also mentioned other unrecognized examples of fractality in art and engineering. Initially, I viewed them as amusing but not essential. But I soon changed my mind.

"Innumerable readers made me aware of something strange. They made me look around and recognize fractals in the works of artists since time immemorial. I now collect such works. An extraordinary amount of arrogance is present in any claim of having been the first in "inventing" something. It's an arrogance that some enjoy, and others do not. Now I reach beyond arrogance when I proclaim that fractals had been pictured forever but their true role had remained unrecognized and waited for me to be uncovered."??

—JB


FOUR SIDES TO EVERY STORY

[12.17.09]

 

The calamatists and denialists are primarily political figures, with firm ideological loyalties, whereas the warners and skeptics are primarily scientists, guided by ever-changing evidence. That distinction between ideology and science not only helps clarify the strengths and weaknesses of the four stances, it can also be used to predict how they might respond to future climate developments.

Stewart Brand is cofounder and co-chairman of The Long Now Foundation. He is the founder of the Whole Earth Catalog, cofounder of The Well, and cofounder of Global Business Network.

He is the original editor of The Whole Earth Catalog, (Winner of the National Book Award). His latest book is Whole Earth Discipline: An Ecopragmatist Manifesto.

WHY DOES THE UNIVERSE LOOK THE WAY IT DOES?

Topic: 

  • UNIVERSE
http://vimeo.com/82232014

"Inflation does not provide a natural explanation for why the early universe looks like it does unless you can give me an answer for why inflation ever started in the first place. That is not a question we know the answer to right now.  That is why we need to go back before inflation into before the Big Bang, into a different part of the universe to understand why inflation happened versus something else. There you get into branes and the cyclic universe. ... I really don't like any of the models that are on the market right now.

WHY DOES THE UNIVERSE LOOK THE WAY IT DOES?

[11.13.09]

Inflation does not provide a natural explanation for why the early universe looks like it does unless you can give me an answer for why inflation ever started in the first place. That is not a question we know the answer to right now.  That is why we need to go back before inflation into before the Big Bang, into a different part of the universe to understand why inflation happened versus something else. There you get into branes and the cyclic universe. ... I really don't like any of the models that are on the market right now. We really need to think harder about what the universe should look like.

 

SEAN CARROLL, a theoretical physicist, is a senior research associate at Caltech. His research interests include theoretical aspects of cosmology, field theory, and gravitation. He is the author of a Spacetime and Geometry: An Introduction to General Relativity; and From Eternity to Here: The Quest for the Ultimate Theory of Time. And he is cofounder and contributor to the Cosmic Variance blog.

THE PHYSICS THAT WE KNOW

[6.27.09]

We have decided, as a scientific endeavor, to extrapolate as much as we can from our knowledge of the individual processes that we can measure: evaporation from the ocean, the formation of a cloud, rainfall coming from a cloud, changes in wind patterns as a function of the pressure field, changes in the jet stream. What we have tried to do is encapsulate those small-scale processes, put them together, and see if we can predict the emerging properties of that fundamental complex system.

THE PHYSICS THAT WE KNOW 
A Conversation with Gavin Schmidt

gavin schmidt

Introduction

There is a simple way to produce a perfect model of our climate that will predict the weather with 100% accuracy. First, start with a universe that is exactly like ours; then wait 13 billion years.

But if you want something useful right now, if you want to construct a means of taking the knowledge that we have and use it to predict future climate, you build computer simulations. Your models are messy, complicated, in constant need of fine tuning, exacting and inexact at the same time. You're using the past to predict the future, extrapolating the very complicated from the very simple, and relying on an ever-changing data stream to inform the outcome.

Climatologist Gavin Schmidt explains:

How do you ask questions about expectations in the future? Obviously, you have to have things that are based on the physics that we know. You have to have things that are based on processes we can go and measure, that has to be based on our ability to understand the climate that we have now. Why do you get seasonal cycles? Why do you get storms? What controls the frequency of these events over a winter, over a longer period? What controls the frequency of, say, El Nino events in the tropical Pacific that have impacts on rainfall in California or in Peru or in Indonesia? How do you understand all of those things?

We approach this is in a very ambitious way.

What we have decided, as a scientific endeavor, is to extrapolate as much as we can from our knowledge of the individual processes that we can measure: evaporation from the ocean, the formation of a cloud, rainfall coming from a cloud, changes in the wind patterns as a function of the pressure field, changes in the jet stream. What we have tried to do is encapsulate those small-scale processes, put them altogether, and see if we can predict the emerging properties of that fundamental complex system.

— Russell Weinberger

GAVIN SCHMIDT is a climatologist with NASA's Goddard Institute for Space Studies in New York, where he models past, present, and future climate. His essay "Why Hasn't Specialization Led To The Balkanization Of Science?" in included in What's Next? Dispatches on the Future of Science, edited By Max Brockman.

Gavin Schmidt's Edge Bio Page

THE PHYSICS THAT WE KNOW

Topic: 

  • UNIVERSE
http://vimeo.com/105884032

"We have decided, as a scientific endeavor, to extrapolate as much as we can from our knowledge of the individual processes that we can measure: evaporation from the ocean, the formation of a cloud, rainfall coming from a cloud, changes in wind patterns as a function of the pressure field, changes in the jet stream. What we have tried to do is encapsulate those small-scale processes, put them together, and see if we can predict the emerging properties of that fundamental complex system."

Pages

Subscribe to RSS - UNIVERSE