MIND

THE TWO STEVES (Part II)

Questions and Answers
[3.24.98]

[On January 21st, Steven Pinker and Steven Rose debated each other in an event chaired by Susan Blackmore and held at London University's Institute of Education under the sponsorship of Dillon's and The London Times. Part I of "The Two Steves," was published on EDGE 36 (March 10th) and is available on the EDGE site. In Part II Pinker and Rose answer questions from the audience.]

QUESTION for STEVEN PINKER: What do you believe consciousness is?

THE TWO STEVES (Part I)

A Debate
[3.24.98]

On January 21st, Steven Pinker and Steven Rose debated each other in an event chaired by Susan Blackmore and held at London University's Institute of Education under the sponsorship of Dillon's and The London Times. Over a thousand people attended-and the event was sold out within three days of being announced. I wish I had been there.

No two individuals better illustrate my notion of a "third culture" which "consists of those scientists and other thinkers in the empirical world who, through their work and expository writing, are taking the place of the traditional intellectual in rendering visible the deeper meanings of our lives, redefining who and what we are."

In this culture, there is no canon or accredited list of acceptable ideas. The strength of the third culture is precisely that it can tolerate disagreements about which ideas are to be taken seriously. Unlike previous intellectual pursuits, the achievements of the third culture are not the marginal disputes of a quarrelsome mandarin class: they will affect the lives of everybody on the planet.

The Two Steves have serious disagreements. But whether it's Steve Pinker weighing forth on the notion that the "problems for our ancestors were subtasks of one big problem for their genes" or Steve Rose asserting that "it is in the nature of living systems to be radically indeterminate, to continually construct their-our-own futures," their debate, their disagreement sharpens and clarifies.

CONSCIOUSNESS IS A BIG SUITCASE

[2.26.98]

"[People] like themselves just as they are," says Marvin Minsky. "Perhaps they are not selfish enough, or imaginative, or ambitious. Myself, I don't much like how people are now. We're too shallow, slow, and ignorant. I hope that our future will lead us to ideas that we can use to improve ourselves."

Marvin believes that it is important that we "understand how our minds are built, and how they support the modes of thought that we like to call emotions. Then we'll be better able to decide what we like about them, and what we don't—and bit by bit we'll rebuild ourselves."

Marvin Minsky is the leading light of AI—artificial intelligence, that is. He sees the brain as a myriad of structures. Scientists who, like Minsky, take the strong AI view believe that a computer model of the brain will be able to explain what we know of the brain's cognitive abilities. Minsky identifies consciousness with high-level, abstract thought, and believes that in principle machines can do everything a conscious human being can do.

"Marvin Minsky is the smartest person I've ever known," computer scientist and cognitive researcher Roger Schank points out. "He's absolutely full of ideas, and he hasn't gotten one step slower or one step dumber. One of the things about Marvin that's really fantastic is that he never got too old. He's wonderfully childlike. I think that's a major factor explaining why he's such a good thinker. There are aspects of him I'd like to pattern myself after. Because what happens to some scientists is that they get full of their power and importance, and they lose track of how to think brilliant thoughts. That's never happened to Marvin."

MARVIN MINSKY is a mathematician and computer scientist; Toshiba Professor of Media Arts and Sciences at the Massachusetts Institute of Technology; cofounder of MIT's Artificial Intelligence Laboratory, Logo Computer Systems, Inc., and Thinking Machines, Inc.; laureate of the Japan Prize (1990), that nation's highest distinction in science and technology; author of seven books, including The Society of Mind.

What Are Numbers, Really? A Cerebral Basis For Number Sense

[10.27.97]

Introduction by
John Brockman

Stan Dehaene is a thirty-two year old mathematician turned cognitive neuropsychologist who studies cognitive neuropsychology of language and number processing in the human brain. He was awarded a masters degree in applied mathematics and computer science from the University of Paris in 1985 and then earned a doctoral degree in cognitive psychology in 1989 at the Ecole des Hautes Etudes en Sciences Sociales in Paris. He is at present a researcher at the Institut National de la Sante in Paris.

Dehaene claims that number is very much like color. "Because we live in a world full of discrete and movable objects, it is very useful for us to be able to extract number. This can help us to track predators or to select the best foraging grounds, to mention only very obvious examples. This is why evolution has endowed our brains and those of many animal species with simple numerical mechanisms. In animals, these mechanisms are very limited, as we shall see below: they are approximate, their representation becomes coarser for increasingly large numbers, and they involve only the simplest arithmetic operations (addition and subtraction). We, humans, have also had the remarkable good fortune to develop abilities for language and for symbolic notation. This has enabled us to develop exact mental representations for large numbers, as well as algorithms for precise calculations. I believe that mathematics, or at least arithmetic and number theory, is a pyramid of increasingly more abstract mental constructions based solely on (1) our ability for symbolic notation, and (2) our nonverbal ability to represent and understand numerical quantities."

He argues that many of the difficulties that children face when learning math and which may turn into full-blown adult "innumeracy" stem from the architecture of our primate brain, which has not evolved for the purpose of doing mathematics.

It is his view that the human brain does not work like a computer and that the physical world is not based on mathematics -- rather math evolved to explain the physical world the way that the eye evolved to provide sight.

—JB

THE REALITY CLUB: George Lakoff, Marc Hauser, Jaron Lanier, Rafael Núñez, Margaret Wertheim, Howard Gardner, Joseph Traub, Steven Pinker, Charles Simonyi

Parallel Memories: Putting Emotions Back Into The Brain

[2.17.97]

We have to put emotion back into the brain and integrate it with cognitive systems. We shouldn't study emotion or cognition in isolation, but should study both as aspects of the mind in its brain.

Neuroscientist Joseph LeDoux seeks a biological rather than psychological understanding of our emotions. He explores the differences between emotional memories (implicit--unconscious--memories) processed in pathways that take information into the amygdala, and memories of emotion (explicit--conscious--memories) processed at the level of the hippocampus and neocortex. 

What Kind Of Thing Is A Number?

[2.10.97]

What is mathematics? It's neither physical nor mental, it's social. It's part of culture, it's part of history. It's like law, like religion, like money, like all those other things which are very real, but only as part of collective human consciousness. That's what math is.

For mathematician Reuben Hersh, mathematics has existence or reality only as part of human culture. Despite its seeming timelessness and infallibility, it is a social-cultural- historic phenomenon. He takes the long view. He thinks a lot about the ancient problems. What are numbers? What are triangles, squares and circles? What are infinite sets? What is the fourth dimension? What is the meaning and nature of mathematics?

In so doing he explains and criticizes current and past theories of the nature of mathematics. His main purpose is to confront philosophical problems: In what sense do mathematical objects exist? How can we have knowledge of them? Why do mathematicians think mathematical entities exist forever, independent of human action and knowledge?

Chapter 11 "THE THICK MOMENT"

[5.7.96]

Daniel C. Dennett: Nick Humphrey is a great romantic scientist, which sounds like a contradiction in terms, but it isn't. Nick's early pioneering work in recording the firing of individual neurons in live animals, in cats, helped pave the way for work by the neuroscientists David Hubel and Torsten Wiesel. They got the 1981 Nobel Prize in physiology or medicine for their work on such single-cell recordings in cats, but it was a technique that Nick had helped develop. Very typically, once he got the technique developed, he thought, "Well, I can spend the rest of my life doing this, or I can do something else. I don't see what the residual problems are." Of course, there were lots of problems, but at any rate, typical of Nick, he wanted to turn to other things as soon as he'd done that.

__________

NICHOLAS HUMPHREY is a psychologist; senior research fellow at Darwin College, Cambridge; author of Consciousness Regained (1983), The Inner Eye (1986), A History of the Mind (1992), and Leaps of Faith: Science, Miracles, and the Search for Supernatural Consolation (1996).

Nicholas Humphrey's Edge Bio Page

Pages

Subscribe to RSS - MIND