MIND

WHAT SHAPE ARE A GERMAN SHEPHERD'S EARS?

Topic: 

  • MIND
http://vimeo.com/79451242

"There is a gigantic project yet to be done that will have the effect of rooting psychology in natural science. Once this is accomplished, you'll be able to go from phenomenology. . . to information processing. . . to the brain. . . down through the workings of the neurons, including the biochemistry, all the way to the biophysics and the way that genes are up-regulated and down-regulated."

WHAT SHAPE ARE A GERMAN SHEPHERD'S EARS?

[7.13.02]

There is a gigantic project yet to be done that will have the effect of rooting psychology in natural science. Once this is accomplished, you'll be able to go from phenomenology. . . to information processing. . . to the brain. . . down through the workings of the neurons, including the biochemistry, all the way to the biophysics and the way that genes are up-regulated and down-regulated.

This is going to happen; I have no doubt at all. When it does we’re going to have a much better understanding of human nature than is otherwise going to be possible.

Introduction by John Brockman

When Stephen Kosslyn received tenure at Harvard, none of his colleagues in the Psychology Department had scholarly interests that overlapped with his, since most people were doing mathematical psychology. Prior to Harvard, during his time at Johns Hopkins, Kosslyn had become very interested in the brain and computation, which was the beginning of cognitive neuroscience. There weren't too many people thinking about such matters at that point.

Over time, many of his senior colleagues in the Psychology Department at Harvard retired or left, so he found myself in the position of being chair of several search committees, where he could nudge the program in a direction that, he believes, turned out to be a very good idea. Kosslyn chaired the committee that hired Dan Schachter, Patrick Cavanaugh, Ken Nakayama, and Alfonso Caramazza. "I tried to get Pinker, but failed on that one… for now," he says. "Most recently I chaired the committee that brought in Susan Carey and Liz Spelke. The department's gotten strong now. It's got a cohesive, underlying theme, which means that there is the potential for interaction."

The Department is currently oriented towards cognitive neuroscience. "Right now," according to Kosslyn, "it’s not very computational, which is a weakness. Computation is the language of information processing, not English, French, or any other natural language because there’s no reason to expect the kinds of concepts and distinctions captured in natural language to be appropriate for characterizing what's going on in the brain. It's different than the objects we encounter in our daily lives. Although we don't have the right version of a computational language yet—one that’s tailored for this particular machine rather than a Von Neumann machine—computation is clearly going to be the language."

— JB

STEPHEN M. KOSSLYN, a Professor of Psychology at Harvard University, has published over 200 papers on the nature of visual mental imagery. He has received numerous honors, including the National Academy of Sciences Initiatives in Research Award and the Prix Jean-Louis Signoret, and was elected to the American Academy of Arts and Sciences and the Society of Experimental Psychologists. His books include Image and Mind; Ghosts in the Mind's Machine; Elements of Graph Design; Wet Mind: The New Cognitive Neuroscience; Image and Brain: The Resolution of the Imagery Debate; and Psychology: The Brain, the Person, the World.

Kosslyn is a Fellow of the American Psychological Association, the American Psychological Society, and the American Association for the Advancement of Science, and has served on several National Research Council committees to advise the government on new technologies. He is also co-founder of the Journal of Cognitive Neuroscience.

Stephen M. Kosslyn's Edge Bio Page

THE REALITY CLUB: Zenon Pylyshyn responds.

HOW DOES THE BRAIN GENERATE COMPUTATION?

[12.2.01]

"For humans, Chomsky's insights into the computational mechanisms underlying language really revolutionized the field, even though not all would agree with the approach he has taken. Nonetheless, the fact that he pointed to the universality of many linguistic features, and the poverty of the input for the child acquiring language, suggested that an innate computational mechanism must be at play. This insight revolutionized the field of linguistics, and set much of the cognitive sciences in motion. That's a verbal claim, and as Chomsky himself would quickly recognize, we really don't know how the brain generates such computation."

 

MARC D. HAUSER, a cognitive neuroscientist, is a professor in the departments of Psychology and the Program in Neurosciences at Harvard, where he is also a fellow of the Mind, Brain, and Behavior Program. He is the author of The Evolution of Communication, The Design of Animal Communication (with M. Konishi), and Wild Minds: What Animals Really Think.

[Click here for Marc D. Hauser's Edge Bio page]


 

HOW DOES THE BRAIN GENERATE COMPUTATION?

Topic: 

  • MIND
http://vimeo.com/79412658

"For humans, Chomsky's insights into the computational mechanisms underlying language really revolutionized the field, even though not all would agree with the approach he has taken. Nonetheless, the fact that he pointed to the universality of many linguistic features, and the poverty of the input for the child acquiring language, suggested that an innate computational mechanism must be at play. This insight revolutionized the field of linguistics, and set much of the cognitive sciences in motion.

THE COMPUTATIONAL PERSPECTIVE

[11.17.01]

"There are going to be things that meet those conditions that are not interestingly computational by anybody's standards, and there are things that are going to fail to meet the standards, which nevertheless you see are significantly like the things that you want to consider computational. So how do you deal with that? By ignoring it, by ignoring the issue of definition, that's my suggestion. Same as with life! You don't want to argue about whether viruses are alive or not; in some ways they're alive, in some ways they're not. Some processes are obviously computational. Others are obviously not computational. Where does the computational perspective illuminate? Well, that depends on who's looking at the illumination."

Introduction

A philosopher by training, Daniel C. Dennett is known as the leading proponent of the computational model of the mind. He has made significant contributions in fields as diverse as evolutionary theory, artificial intelligence, cognitive science, animal studies, computer science among others. Never one to avoid a good fight, he has clashed with such noted thinkers as John Searle, Roger Penrose, and Stephen Jay Gould. In this regard, Dennett is emblematic of the third culture intellectual.The strength of the third culture is precisely that it can tolerate disagreements about which ideas are to be taken seriously. There is no canon or accredited list of acceptable ideas. Unlike previous intellectual pursuits, the achievements of the third culture are not the marginal disputes of a quarrelsome mandarin class: they affect the lives of everybody on the planet.

"Dan Dennett is living proof that philosophy is not, as many think, airy speculation and effete musing.," notes Steven Pinker. "Time and again Dan has worked as a razor-sharp cognitive scientist, analyzing the implications of research more thoroughly than the researchers did themselves. His elucidation of different explanatory "stances" (physical, intentional, design) provided the key ideas behind mental modules (or multiple intelligences) for different domains of knowledge. His analyses of behaviorism, artificial intelligence, imagery, consciousness, free will, and evolutionary psychology just brim with insight and original ideas. And it doesn't seem fair that someone with such serious and important ideas should be so much fun to read!"

Marc D. Hauser credits Dennett (along with Jerry Fodor) as one of the two empirical philosophers — those who use data to drive philosophical discussion — that has hs had an extraordinary impact on evolutionary studies of the mind. Although these two often hold quite radically different positions, they have each contributed in important ways to our understanding of the mind, and how psychological findings bear on profound philosophical distinctions.

According to Hauser, "Dennett has had a significant impact on studies of animal cognition due in part to his work on the intentional stance and his intuitions about the kinds of inferences that humans and nonhuman animals might make with respect to other minds. When Dan laid out, in his typically lucid and playful fashion, how ethologists might go about studying intentionality from a Gricean perspective (I know that you know that I want that banana hidden from view from our fearless leader), this opened the door to a series of studies and analyses of animal behavior.

"Most crucially, Dan's insight into the problem of other minds, and of using studies of false belief to test for such mental states, set forth a cottage industry of research in animals and human infants. It is the combination of Dan's playfulness and creativity that makes him an asset to those of us working on animal cognition. One is almost tempted to say that in the same way that imaging provides a tool for understanding the neurobiological and functional architecture of the human mind, Dennett represents a tool for those of us studying animal minds."

JB

DANIEL C. DENNETT is Distinguished Arts and Sciences Professor, Professor of Philosophy, and Director of the Center for Cognitive Studies at Tufts University. His first book, He is the author of Content and Consciousness; Brainstorms; Elbow Room;The Intentional Stance; Consciousness Explained; Darwin's Dangerous Idea; Kinds of Minds; and Brainchildren: A Collection of Essays. He co-edited The Mind's I with Douglas Hofstadter and he is the author of over a hundred scholarly articles on various aspects on the mind, published in journals ranging from Artificial Intelligence and Behavioral and Brain Sciences to Poetics Today and the Journal of Aesthetics and Art Criticism.

Daniel C. Dennett's Edge Bio Page

THE REALITY CLUB: Jaron Lanier responds to Dan Dannett


THE COMPUTATIONAL PERSPECTIVE

Topic: 

  • MIND
http://vimeo.com/79415322

"There are going to be things that meet those conditions that are not interestingly computational by anybody's standards, and there are things that are going to fail to meet the standards, which nevertheless you see are significantly like the things that you want to consider computational. So how do you deal with that? By ignoring it, by ignoring the issue of definition, that's my suggestion. Same as with life! You don't want to argue about whether viruses are alive or not; in some ways they're alive, in some ways they're not. Some processes are obviously computational.

SCIENCE AND THE PSYCHOLOGY OF BELIEFS

[8.23.01]

The one thing we've arned from the last three decades of research is that science is socially and culturally embedded and thus biased. Still, it's the best system we have for understanding causality in all realms, in all fields. So despite the fact that it's loaded with biases, there is a real world out there that we can know and the best way to know it is through science. The reason for that is because there's at least a method, an attempt to corroborate one's own subjective perceptions. There's a way to find out if you and I are seeing the same colors when we see red. There's actually a way to test these things, or at least try to get at them. That's what separates science from everything else.


MICHAEL SHERMER: SCIENCE AND THE PSYCHOLOGY OF BELIEFS

Introduction

Michael Shermer is mainly interested in understanding how science works as a system of thought, as a social system and as a psychology of beliefs. His general field of study is in the social sciences, and particularly how belief systems work. As the man behind SKEPTIC Magazine, and Director of the Skeptics Society, he notes that his "engagement with the paranormal, pseudoscience, fringe groups, cults and all sorts of wacky, X-files stuff is not just to debunk, but to understand belief systems on the fringes work, in order to understand how science works, and how mainstream beliefs work. Shermer works the edges, the fringes, what he calls " the borderlands and the nonsense stuff."

In 1992 he founded Skeptic Magazine with a circulation 1,000, and now it's up to about 40,000. Ultimately Shermer wants to reach half a million readers, like Scientific American, but, he notes, "that's a bit of a reach because selling ideas is much harder than selling personalities and celebrities".

— JB

MICHAEL SHERMER is the Founding Publisher of Skeptic magazine, the Director of the Skeptics Society, a monthly columnist for Scientific American, the host of the Skeptics Lecture Series at Caltech, and the co host and producer of the 13-hour Fox Family television series, Exploring the Unknown.

Shermer is the author of How We Believe: The Search For God In An Age Of Science; Why People Believe Weird Things; and Teach Your Child Science. He is the coauthor of Denying History: Who Says The Holocaust Never Happened and Why Do They Say It? and Teach Your Child Math And Mathemagics.

He has appeared on such shows as 20/20, Dateline, Charlie Rose, Tom Snyder, Donahue, Oprah, Sally, Lezza, Unsolved Mysteries, and other shows, as well as on documentaries aired on A & E, Discovery, and The Learning Channel.

Click Here for Michael Shermer's Bio Page

THE REALITY CLUB: Helena Cronin, Piet Hut respond to Michael Shermer 


The Emergent Self

[6.4.01]

"Why do emergent selves, virtual identities, pop up all over the place, creating worlds, whether at the mind/body level, the cellular level, or the transorganism level? This phenomenon is something so productive that it doesn't cease creating entirely new realms: life, mind, and societies. Yet these emergent selves are based on processes so shifty, so ungrounded, that we have an apparent paradox between the solidity of what appears to show up and its groundlessness. That, to me, is the key and eternal question."

FRANCISCO VARELA (1946 - 2001)

Francisco Varela died on May 28 at his home in Paris. According to his friend and collaborator Evan Thompson "I am told he died completely calm and at peace. I spent several days last week with him and his family. I will always cherish the strength of spirit, intelligence, and kindness he continued to manifest in his last days, despite his illness. He will be deeply missed."

Francisco, an experimental and theoretical biologist, studied what he termed "emergent selves" or "virtual identities." His was an immanent view of reality, based on metaphors derived from self-organization and Buddhist-inspired epistemology rather than on those derived from engineering and information science. He presented a challenge to the traditional AI view that the world exists independently of the organism, whose task is to make an accurate model of that world — to "consult" before acting. His nonrepresentationalist world — or perhaps "world-as-experienced" — has no independent existence but is itself a product of interactions between organisms and environment. He first became known for his theory of autopoiesis ("self production"), which is concerned with the active self-maintenance of living systems whose identities remain constant while their components continually change. Varela is tough to categorize. He was a neuroscientist who became an immunologist. He was well informed about cognitive science and was a radical critic of it, because he was a believer in "emergence" — not the vitalist idea promulgated in the 1920s (that of a magical property that emerges inexplicably from lower mechanical operations) but the idea that the whole appears as a result of the dynamics of its component parts. He thought that classic computationalist cognitive science is too simplemindedly mechanistic. He was knowledgeable and romantic at the same time.

In 1995 I talked to Francisco for my book The Third Culture (Simon & Schuster, 1995. Speaking about Varela in the book, theoretical biologist Stuart Kauffman noted that "Francisco Varela is amazingly inventive, freewheeling, and creative. There's a lot of depth in what he and Humberto Maturana have said. Conversely, from the point of view of a tied-down molecular biologist, this is all airy-fairy, flaky stuff. Thus there's the mixed response. That part of me that's tough-minded and critical is questioning, but the other part of me has cottoned on to the recent stuff he's doing on self- representation in immune networks. I love it."

To remember and honor Francisco, to think about his ideas, I present "The Emergent Self", Chapter 12 in The Third Culture. Included in the chapter are commentaries on Francisco and his work by Stuart Kauffman, W. Daniel Hillis, Christopher G, Langton, Daniel C.Dennett, Niles Eldredge, Brian Goodwin, and Lynn Margulis.

— JB

FRANCISCO VARELA was a biologist; director of research at the Centre National de Recherche Scientifique, and professor of cognitive science and epistemology at the École Polytechnique, in Paris; author of Principles of Biological Autonomy; coauthor with Humberto D. Maturana of Autopoiesis and Cognition: The Realization of the Living and The Tree of Knowledge, and with Evan Thompson and Eleanor Rosch of The Embodied Mind .

Francisco Varela's Edge bio page

SOFTWARE IS A CULTURAL SOLVENT

How Our Artifacts Will Be Able To Interact With Our Biological Forms
[4.10.01]

"I work on developing an understanding of biological complexity and how we can create it, because the limits of software engineering have been clear now for two decades. The biggest programs anyone can build are about ten million lines of code. A real biological object — a creature, an ecosystem, a brain — is something with the same complexity as ten billion lines of code. And how do we get there?"

The New York Times, in a front page article on August 31st ("Scientists Report They Have Made Robot That Makes Its Own Robots" By Kenneth Chang) reported on the work of Jordan Pollack and his Brandeis University colleague Hod Lipson: "For the first time", The Times reported, "computer scientists have created a robot that designs and builds other robots, almost entirely without human help."

"I work on this question of self-organization, using evolution, neural networks, games, problem solving, and robotics," says Pollack. "And the way that we work on it is by trying to set up non-equilibrium chemical reactions in software which dissipate computer time ­ a form of energy — and create structure. Some of that structure we can actually make real in the form of robots, and although robots are much more exciting to cameras and the media than problem-solvers, games and language learning, our fundamental work is in trying to understand where complexity itself comes from, without a designer."

He sees "a merger of bio-informatics, biotechnology, and information processing. As we understand cellular processes, neural representations, and develop microelectronic and nanoscale technologies, our artifacts will be able to interact with our biological forms at a most fundamental level. Unfortunately, we really haven't fathomed the complexity of nature yet to know what to do with it."

— JB

JORDAN POLLACK, is a computer science and complex systems professor at Brandeis University. His laboratory's work on AI, Artificial Life, Neural Networks, Evolution, Dynamical Systems, Games, Robotics, Machine Learning, and Educational Technology has been reported on by the New York Times, Time, Science, NPR, Slashdot.org and many other media sources worldwide. Jordan is a prolific inventor, advises several startup companies and incubators, and in his spare time runs Thin Mail, an Internet based service designed to increase the usefulness of wireless email.

Click here for Jordan Pollack's Edge Bio Page

SOFTWARE IS A CULTURAL SOLVENT

Topic: 

  • MIND
http://vimeo.com/79420941

"I work on developing an understanding of biological complexity and how we can create it, because the limits of software engineering have been clear now for two decades. The biggest programs anyone can build are about ten million lines of code. A real biological object — a creature, an ecosystem, a brain — is something with the same complexity as ten billion lines of code. And how do we get there?"

Pages

Subscribe to RSS - MIND