MIND

The Nature of Moral Motivation

[10.16.19]

Although we have made tremendous progress in understanding many details of the brain, there are huge gaps in our knowledge. What's relevant to me, as somebody who's interested in the nature of moral behavior, is how little we understand about the nature of reasoning, or if I may use a different expression, problem solving. I don't know what reasoning is. For a long time, people seemed to think it was completely separate from emotion, but we know that can't be true.

The nature of problem solving is something that is still very much in the pioneering stages in neuroscience. It's a place where neuroscience and psychology can cooperate to get interesting experimental paradigms so that we can attack the question: How is it that, out of all these constraints and factors, a reasonable decision can be made? That's a tough one. It will require us to find good experimental paradigms and new techniques.

PATRICIA S. CHURCHLAND is professor emeritus of philosophy at the University of California, San Diego, and adjunct professor at the Salk Institute. Her research has centered on the interface between neuroscience and philosophy, with a current focus on the association of morality and the social brain. She is the author of Conscience: The Origins of Moral IntuitionPatricia S. Churchland's Edge Bio Page

A Post-Galilean Paradigm

Topic: 

  • MIND
https://vimeo.com/358084832

We're now going through a phase of history where people are so blown away at the success of physical science and the wonderful technology it's produced that they've forgotten its philosophical underpinnings. They've forgotten its inherent limitations. If we want a science of consciousness, we need to move beyond Galileo. We need to move to what I call a post-Galilean paradigm. We need to rethink what science is. That doesn't mean we stop doing physical science or we do physical science differently—I'm not here to tell physical scientists how to do their jobs.

A Post-Galilean Paradigm

[9.24.19]

We're now going through a phase of history where people are so blown away at the success of physical science and the wonderful technology it's produced that they've forgotten its philosophical underpinnings. They've forgotten its inherent limitations. If we want a science of consciousness, we need to move beyond Galileo. We need to move to what I call a post-Galilean paradigm. We need to rethink what science is. That doesn't mean we stop doing physical science or we do physical science differently—I'm not here to tell physical scientists how to do their jobs. It does, however, mean that it's not the full story. We need physical science to encompass a more expansive conception of the scientific method. We need to adopt a worldview that can accommodate both the quantitative data of physical science and the qualitative reality of consciousness. That's essentially the problem.

Fortunately, there is a way forward. There is a framework that could allow us to make progress on this. It's inspired by certain writings from the 1920s of the philosopher Bertrand Russell and the scientist Arthur Eddington, who is incidentally the first scientist to confirm general relativity after the First World War. I'm inclined to think that these guys did in the 1920s for the science of consciousness what Darwin did in the 19th century for the science of life. It's a tragedy of history that this was completely forgotten about for a long time for various historical reasons we could talk about. But, it's recently been rediscovered in the last five or ten years in academic philosophy, and it's causing a lot of excitement and interest.

PHILIP GOFF is a philosopher and consciousness researcher at Durham University, UK, and author of Galileo's Error: Foundations for a New Science of Consciousness (forthcoming, 2019). Philip Goff's Edge Bio Page

The Geometry of Thought

[6.25.19]

Slowly, the significance of spatial thinking is being recognized, of reasoning with the body acting in space, of reasoning with the world as given, but even more with the things that we create in the world. Babies and other animals have amazing feats of thought, without explicit language. So do we chatterers. Still, spatial thinking is often marginalized, a special interest, like music or smell, not a central one. Yet change seems to be in the zeitgeist, not just in cognitive science, but in philosophy and neuroscience and biology and computer science and mathematics and history and more, boosted by the 2014 Nobel prize awarded to John O’Keefe and Eduard and Britt-May Moser for the remarkable discoveries of place cells, single cells in the hippocampus that code places in the world, and grid cells next door one synapse away in the entorhinal cortex that map the place cells topographically on a neural grid. If it’s in the brain, it must be real. Even more remarkably, it turns out that place cells code events and ideas and that temporal and social and conceptual relations are mapped onto grid cells. Voila: spatial thinking is the foundation of thought. Not the entire edifice, but the foundation.

The mind simplifies and abstracts. We move from place to place along paths just as our thoughts move from idea to idea along relations. We talk about actions on thoughts the way we talk about actions on objects: we place them on the table, turn them upside down, tear them apart, and pull them together. Our gestures convey those actions on thought directly. We build structures to organize ideas in our minds and things in the world, the categories and hierarchies and one-to-one correspondences and symmetries and recursions.

BARBARA TVERSKY is Professor Emerita of Psychology, Stanford University, and Professor of Psychology and Education, Columbia Teachers College. She is the author of Mind in Motion: How Action Shapes Thought. Barbara Tversky's Edge Bio Page

Perception As Controlled Hallucination: Predictive Processing and the Nature of Conscious Experience

Topic: 

  • MIND
https://vimeo.com/335159031

Perception itself is a kind of controlled hallucination. . . . [T]he sensory information here acts as feedback on your expectations. It allows you to often correct them and to refine them. But the heavy lifting seems to be being done by the expectations. Does that mean that perception is a controlled hallucination? I sometimes think it would be good to flip that and just think that hallucination is a kind of uncontrolled perception. 

Perception As Controlled Hallucination

Predictive Processing and the Nature of Conscious Experience
[6.6.19]

Perception itself is a kind of controlled hallucination. . . . [T]he sensory information here acts as feedback on your expectations. It allows you to often correct them and to refine them. But the heavy lifting seems to be being done by the expectations. Does that mean that perception is a controlled hallucination? I sometimes think it would be good to flip that and just think that hallucination is a kind of uncontrolled perception. 

ANDY CLARK is professor of Cognitive Philosophy at the University of Sussex and author of Surfing Uncertainty: Prediction, Action, and the Embodied MindAndy Clark's Edge Bio Page

Alzheimer's Prevention

Topic: 

  • MIND
https://vimeo.com/314258481

Right now, we don’t have therapies that regrow neurons. Alzheimer’s is a disease that kills your neurons over time, so once they’re gone they’re pretty much gone. There are things that one can do pharmaceutically to ameliorate the symptoms. For example, there are FDA-approved drugs such as acetylcholinesterase inhibitors or memantine, which do lessen or stabilize symptoms for a few years, but they can’t stop disease progression. What we’re interested in is disease modification, stopping it before it’s too severe or too advanced.

Alzheimer's Prevention

[2.11.19]

Right now, we don’t have therapies that regrow neurons. Alzheimer’s is a disease that kills your neurons over time, so once they’re gone they’re pretty much gone. There are things that one can do pharmaceutically to ameliorate the symptoms. For example, there are FDA-approved drugs such as acetylcholinesterase inhibitors or memantine, which do lessen or stabilize symptoms for a few years, but they can’t stop disease progression. What we’re interested in is disease modification, stopping it before it’s too severe or too advanced.

At the Alzheimer’s Prevention Clinic, we try to tell people what to do in a preventative way. There are a lot of other people and clinicians that are actively engaging in prevention as well. It’s new in my field, especially in the field of neurology. Until four years ago nobody would dare use the word “prevention” out loud because so many doctors and clinicians would just label you as a quack right away and you would lose credibility overnight. I find scientists are much more open to this now.

LISA MOSCONI is the director of the Women's Brain Initiative and the associate director of the Alzheimer's Prevention Clinic at Weill Cornell Medical College. She is the author of Brain Food: The Surprising Science of Eating for Cognitive PowerLisa Mosconi's Edge Bio Page

Pages

Subscribe to RSS - MIND