LIFE

Lynn Margulis 1938-2011 "Gaia Is A Tough Bitch"

[11.23.11]

Introduction
By John Brockman

Biologist Lynn Margulis died on November 22nd. She stood out from her colleagues in that she would have extended evolutionary studies nearly four billion years back in time. Her major work was  in cell evolution, in which the great event was the appearance of the eukaryotic, or nucleated, cell — the cell upon which all larger life-forms are based. Nearly forty-five years ago, she argued for its symbiotic origin: that it arose by associations of different kinds of bacteria. Her ideas were generally either ignored or ridiculed when she first proposed them; symbiosis in cell evolution is now considered one of the great scientific breakthroughs.

Margulis was also a champion of the Gaia hypothesis, an idea developed in the 1970s by the free lance British atmospheric chemist James E. Lovelock. The Gaia hypothesis states that the atmosphere and surface sediments of the planet Earth form a self- regulating physiological system — Earth's surface is alive. The strong version of the hypothesis, which has been widely criticized by the biological establishment, holds that the earth itself is a self-regulating organism; Margulis subscribed to a weaker version, seeing the planet as an integrated self- regulating ecosystem. She was criticized for succumbing to what George Williams called the "God-is good" syndrome, as evidenced by her adoption of metaphors of symbiosis in nature. She was, in turn, an outspoken critic of mainstream evolutionary biologists for what she saw as a failure to adequately consider the importance of chemistry and microbiology in evolution.

I first met her in the late 80's and in 1994 interviewed her for my book The Third Culture: Beyond the Scientific Revolution (1995). Below, in remembrance, please see her chapter, "Gaia is a Tough Bitch". One of the compelling features of The Third Culture was that I invited each of the participants to comment about the others. In this regard, the end of the following chapter has comments on Margulis and her work by Daniel C. Dennett, the late George C. Williams, W. Daniel Hillis, Lee Smolin, Marvin Minsky, Richard Dawkins, and the late Francisco Varela. Interesting stuff. 

As I wrote in the introduction to the first part of the book (Part I: The Evolutionary Idea): "The principal debates are concerned with the mechanism of speciation; whether natural selection operates at the level of the gene, the organism, or the species, or all three; and also with the relative importance of other factors, such as natural catastrophes." These very public debates were concerned with ideas represented by George C. Williams and Richard Dawkins on one side and Stephen Jay Gould and Niles Eldredge on the other side. Not for Lynn Margulis. All the above scientists were wrong because evolutionary studies needed to begin four billion years back in time. And she was not shy about expressing her opinions. Her in-your-face, take-no-prisoners stance was pugnacious and tenacious. She was impossible. She was wonderful.

Margulis conversation thread

[11.23.11]

Introduction
By John Brockman

Biologist Lynn Margulis died on November 22nd. She stood out from her colleagues in that she would have extended evolutionary studies nearly four billion years back in time. Her major work was  in cell evolution, in which the great event was the appearance of the eukaryotic, or nucleated, cell — the cell upon which all larger life-forms are based. Nearly forty-five years ago, she argued for its symbiotic origin: that it arose by associations of different kinds of bacteria. Her ideas were generally either ignored or ridiculed when she first proposed them; symbiosis in cell evolution is now considered one of the great scientific breakthroughs.

Margulis was also a champion of the Gaia hypothesis, an idea developed in the 1970s by the free lance British atmospheric chemist James E. Lovelock. The Gaia hypothesis states that the atmosphere and surface sediments of the planet Earth form a self- regulating physiological system — Earth's surface is alive. The strong version of the hypothesis, which has been widely criticized by the biological establishment, holds that the earth itself is a self-regulating organism; Margulis subscribed to a weaker version, seeing the planet as an integrated self- regulating ecosystem. She was criticized for succumbing to what George Williams called the "God-is good" syndrome, as evidenced by her adoption of metaphors of symbiosis in nature. She was, in turn, an outspoken critic of mainstream evolutionary biologists for what she saw as a failure to adequately consider the importance of chemistry and microbiology in evolution.

I first met her in 1995 when I interviewed her for my book The Third Culture: Beyond the Scientific Revolution (1995). Below, in remembrance, please see her chapter, "Gaia is a Tough Bitch". One of the compelling features of The Third Culture was that I invited each of the participants to comment about the others. In this regard, the end of the following chapter has comments on Margulis and her work by Daniel C. Dennett, the late George C. Williams, W. Daniel Hillis, Lee Smolin, Marvin Minsky, Richard Dawkins, and the late Francisco Varela. Interesting stuff. 

As I wrote in the introduction to the first part of the book (Part I: The Evolutionary Idea): "The principal debates are concerned with the mechanism of speciation; whether natural selection operates at the level of the gene, the organism, or the species, or all three; and also with the relative importance of other factors, such as natural catastrophes." These very public debates were concerned with ideas represented by George C. Williams and Richard Dawkins on one side and Stephen Jay Gould and Niles Eldredge on the other side. Not for Lynn Margulis. All the above scientists were wrong because evolutionary studies needed to begin four billion years back in time. And she was not shy about expressing her opinions. Her in-your-face, take-no-prisoners stance was pugnacious and tenacious. She was impossible. She was wonderful.  

THE EDGE CONVERSATION:

Ed Regis
Science writer; Author, What Is Life?

The best epitaph for Lynn Margulis probably consists of her own words, from a Discover magazine Q&A with her, published earlier this year:   

Q: Do you ever get tired of being called controversial?   
A: I don’t consider my ideas controversial. I consider them right.   

George Dyson
Science Historian, Author, Darwin Among the Machines; Turing's Cathedral (forthcoming)

Lynn Margulis did much of the hard work (preceded by some heretic Russians, and the even more heretic Samuel Butler) of opening the doorway I was able to walk through with "Darwin Among the Machines". She titled her review in the "Times Higher Education Supplement" (14 August 1998) "Perfection in Grenade Throwing," a reference not only to Samuel Butler's long-running critique of Charles Darwinism, but to William Calvin's theory of mental evolution through sequence-buffering for stone-throwing, and certain lingering repercussions of the trench warfare that dominated World War I. Lynn Margulis was herself among the elite of scientific grenade throwers, and long-entrenched positions shifted when she scored a hit.

Nicholas Pritzker 
Chairman of the Board and CEO of the Hyatt Development Corporation

In my teen-age years, my science side danced with my fascination with metaphysical concepts.   was amazed by the discovery of the CMB, but equally so in trying to find connection between Beckett's novels, Magritte's surrealism, symbolic logic and the Rinzai Zen koan: the basis of my undergraduate thesis in 1969. At the time, I thought of Gaia as a mystical concept (the "god is good" idea).  Later, as science decisively won the race for my attention, I was startled to learn that at least some of the Gaia thinkers, especially Margulis, were working with scientifically valid theories but within a novel conceptual context. This approach lends itself to misinterpretation, but seems to me worth the risk!  

Jerry Coyne
Professor, Department of Ecology and Evolution, University of Chicago; author, Why Evolution is True

Lynn Margulis did indeed have a clever—and correct—idea that revolutionized our view of how life evolved, but later became a victim of the Big Idea Syndrome, thinking that because she was right about organelles, she was right about everything else. That led her to make repeated and completely unfounded attacks on evolutionary biology in the last decade, embarrassing herself with her pronouncements. Her legacy is a good one, but not unmixed.  

Rereading her chapter "Gaia is a Tough Bitch" only reinforces my opinion about her  misguided criticisms of neo-Darwinian evolution and her unwarranted antipathy toward population genetics. Not only did she fail to comprehend how population genetics has advanced our understanding of nature—the effects of inbreeding and of genetic drift are two such advances—but her views on speciation, a field in which I've worked for three decades, are simply wrong.  

Margulis's idea that new species originate from symbiosis has no empirical support. When we try to understand the genetic underpinnings of new species, we find that, with the exception of polyploidy in plants, it always maps to changes in the DNA.  That is, the splitting of lineages, like evolution within a lineage itself, is almost always the result of gradual, gene-by-gene change. We have no evidence that symbiosis has been responsible for even a single case of speciation.  

All of us should honor Margulis's real contributions to biology: her recognition and working out of earlier suggestions that some cellular organelles were acquired by symbiosis, and that the ancestors of these organelles were bacteria. This was a tremendous advance, achieved in the teeth of substantial doubt. Sadly, Margulis's success in the face of such criticism seems to have made her stubborn and dogmatic about her other biological views.  And, even sadder, those theories were often wrong.  She strongly denied, for example, that AIDS was caused by the HIV virus, or that the HIV virus even existed.  AIDS, she maintained, was simply syphilis, with the spirochete rendered undetectable because it formed a symbiosis with human cells. How does one balance her positive contributions against such a deadly form of denialism?

We should always honor those scientists who have advanced our understanding of nature in ways as profound as Margulis. But let us also remember that being right about one big matter does not render us immune to error in other matters, and that scientific fame does not give us a free pass for all of our ideas.



LYNN MARGULIS was Distinguished University Professor in the Department of Geology at the University of Massachusetts, Amherst. She was the author of Symbiotic PlanetThe Origin of Eukaryotic CellsEarly Life, and Symbiosis in Cell Evolution. She was also the coauthor, with Karlene V. Schwartz, of Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth and with Dorion Sagan of Acquiring GenomesMicrocosmosOrigins Of Sex, and Mystery Dance.


Lynn Margulis 1938-2011

"Gaia Is A Tough Bitch"

[From The Third Culture: Beyond the Scientific Revolution (1995). Paperback: Amazon | B&NEdge Online Edition

Richard Dawkins: I greatly admire Lynn Margulis's sheer courage and stamina in sticking by the endosymbiosis theory, and carrying it through from being an unorthodoxy to an orthodoxy. I'm referring to the theory that the eukaryotic cell is a symbiotic union of primitive prokaryotic cells. This is one of the great achievements of twentieth-century evolutionary biology, and I greatly admire her for it.

[LYNN MARGULIS]: At any fine museum of natural history — say, in New York, Cleveland, or Paris — the visitor will find a hall of ancient life, a display of evolution that begins with the trilobite fossils and passes by giant nautiloids, dinosaurs, cave bears, and other extinct animals fascinating to children. Evolutionists have been preoccupied with the history of animal life in the last five hundred million years. But we now know that life itself evolved much earlier than that. The fossil record begins nearly four thousand million years ago! Until the 1960s, scientists ignored fossil evidence for the evolution of life, because it was uninterpretable.

I work in evolutionary biology, but with cells and microorganisms. Richard Dawkins, John Maynard Smith, George Williams, Richard Lewontin, Niles Eldredge, and Stephen Jay Gould all come out of the zoological tradition, which suggests to me that, in the words of our colleague Simon Robson, they deal with a data set some three billion years out of date. Eldredge and Gould and their many colleagues tend to codify an incredible ignorance of where the real action is in evolution, as they limit the domain of interest to animals — including, of course, people. All very interesting, but animals are very tardy on the evolutionary scene, and they give us little real insight into the major sources of evolution's creativity. It's as if you wrote a four-volume tome supposedly on world history but beginning in the year 1800 at Fort Dearborn and the founding of Chicago. You might be entirely correct about the nineteenth-century transformation of Fort Dearborn into a thriving lakeside metropolis, but it would hardly be world history.

Rethinking "Out of Africa"

Topic: 

  • LIFE
http://vimeo.com/79899367

"I'm thinking a lot about species concepts as applied to humans, about the "Out of Africa" model, and also looking back into Africa itself. I think the idea that modern humans originated in Africa is still a sound concept. Behaviorally and physically, we began our story there, but I've come around to thinking that it wasn't a simple origin. Twenty years ago, I would have argued that our species evolved in one place, maybe in East Africa or South Africa. There was a period of time in just one place where a small population of humans became modern, physically and behaviourally.

RETHINKING "OUT OF AFRICA"

[11.12.11]

I'm thinking a lot about species concepts as applied to humans, about the "Out of Africa" model, and also looking back into Africa itself. I think the idea that modern humans originated in Africa is still a sound concept. Behaviorally and physically, we began our story there, but I've come around to thinking that it wasn't a simple origin. Twenty years ago, I would have argued that our species evolved in one place, maybe in East Africa or South Africa. There was a period of time in just one place where a small population of humans became modern, physically and behaviourally. Isolated and perhaps stressed by climate change, this drove a rapid and punctuational origin for our species. Now I don’t think it was that simple, either within or outside of Africa. 

CHRISTOPHER STRINGER is one of the world's foremost paleoanthropologists. He is a founder and most powerful advocate of the leading theory concerning our evolution: Recent African Origin or "Out of Africa". He has worked at The Natural History Museum, London since 1973,  is a Fellow of the Royal Society, and currently leads the large and successful Ancient Human Occupation of Britain project (AHOB),  His most recent book is The Origin of Our Species (titled Lone Survivors in the US). 

Christopher Stringer's Edge Bio Page


Rethinking "Out of Africa" from Edge Foundation on Vimeo.


Rethinking "Out of Africa"

[CHRISTOPHER STRINGER:] At the moment, I'm looking again at the whole question of a recent African origin for modern humans—the leading idea over the last 20 years. This argues  that we had a recent African origin, that we came out of Africa, and that we replaced all of the other human forms that were outside of Africa. But we're having to re-evaluate that now because genetic data suggest that the modern humans who came out of Africa about 60,000 years ago probably interbred with Neanderthals, first of all, and then some of them later on interbred with another group of people called the Denisovans, over in south eastern Asia.

If this is so, then we are not purely of recent African origin. We're mostly of recent African origin, but there was contact with these other so-called species. We're having to re-evaluate the Out-of-Africa theory, and we're having to re-evaluate the species concepts we apply, because in one view of thinking, species should be self-contained units. They don't interbreed with other species. However, for me, the whole idea of Neanderthals as a different species is really a recognition of their separate evolutionary history—the fact that we can show that they evolved through time in a particular direction, distinct from modern humans, and they separated maybe 400,000 years ago from our lineage. And morphologically we can distinguish a relatively complete Neanderthal fossil from any recent human.

 

The Evolution of Cooperation Edge Master Class 2011

[9.19.11]

Why has cooperation, not competition, always been the key to the evolution of complexity?

MARTIN NOWAK is a Mathematical Biologist, Game Theorist; Professor of Biology and Mathematics, Director, Center for Evolutionary Dynamics, Harvard University; Coauthor (with Roger Highfield), SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed.

Martin Nowak's Edge Bio Page


In July, Edge held its annual Master Class in Napa, California on the theme: "The Science of Human Nature".  In the six week period that began September 12th, we are publishing the complete video, audio, and texts:  Princeton psychologist Daniel Kahneman on the marvels and the flaws of intuitive thinking; Harvard mathematical biologist Martin Nowak on the evolution of cooperation; Harvard psychologist Steven Pinker on the history of violence; UC-Santa Barbara evolutionary psychologist Leda Cosmides on the architecture of motivation; UC-Santa Barbara neuroscientist Michael Gazzaniga on neuroscience and the law; and Princeton religious historian Elaine Pagels on The Book of Revelation.

For publication schedule and details, go to Edge Master Class 2011: The Science of Human Nature.



The Evolution of Cooperation

I would like to talk about the evolution of cooperation. And if I see one person in the room who hasn't heard my joke, for the benefit of this person and to the detriment of all others, I want to tell my joke, because this is what defines me.

I'm a mathematical biologist. What is a mathematical biologist?  A mathematical biologist is best described by the following story:  There's a shepherd and a flock of sheep. A man comes by and says, "If I guess the correct number of sheep in your flock, can I have one?" The shepherd says, "All right, try."  So the man looks and says, "Eighty-three."  And the shepherd is completely amazed because it's right.  So the man picks up a sheep and starts to walk away and the shepherd says, "Hang on, if I guess your profession, can I have my sheep back?"  And he says, "Please, try."  "You must be a mathematical biologist."  "How did you know?"  "Because you picked up my dog." If you really think about it, the important essence of our field is to get the numbers right. 

To Err Is Primate

[7.27.11]

Why do house sellers, professional golfers, experienced investors, and the rest of us succumb to strategies that make us systematically go wrong?

 

INTRODUCTION

People are fascinated by research into the mental lives of monkeys and apes—but not always for the right reasons. What they usually want to know is whether these animals share certain important traits with humans, such as syntax, social reasoning, or altruism. Just how special are we? This question is irresistible, and isn’t going to go away. But the best work in this area is a lot more subtle than this.

This brings me to my colleague Laurie Santos, one of best young scientists in the field of psychology. She does experiments with non-human primates—including capuchins in her laboratory at Yale and rhesus macaques at a field site in Cayo Santiago—as a way to develop and test subtle theories of the nature and evolution of certain central human capacities. Much of her recent research focuses on biases in reasoning and decision-making; she is one of the founders of the exciting new field of comparative behavioral economics.

Santos asks hard questions and makes important discoveries. Her writing and thinking display an easy facility with a range of literatures; she is living proof of a comment once made by Jerry Fodor, that the best interdisciplinary conversations are those that occur inside a single head.

— Paul Bloom
 

LAURIE R. SANTOS is an associate professor of psychology at Yale University and the director of its Comparative Cognition Laboratory. She received her BA (1997) in psychology and biology and her PhD (2003) in psychology from Harvard University. She has investigated a number of topics in comparative cognition, including the evolutionary origins of irrational decision making and prosocial behavior. She is the recipient of Harvard’s Goethals Award for Teaching Excellence, Yale’s Greer Memorial Prize for Outstanding Junior Faculty, and the Stanton Prize from the Society for Philosophy and Psychology for outstanding contributions to interdisciplinary research.

PAUL BLOOM is the Brooks and Suzanne Ragen Professor of Psychology at Yale University. His most recent book is How Pleasure Works.

Excerpted from Future Science: Essays From The Cutting Edge, Edited by Max Brockman (Vintage Books, 2011)


TO ERR IS PRIMATE

[LAURIE SANTOS:]  It was the final shot of the tournament for the world’s number one player. After three tense rounds in the 2009 Barclays Tournament, Tiger Woods was now one putt away from another tournament win. His fairway shot was nearly perfect—his ball had landed just seven feet from the hole. Making this putt would earn him a birdie on the last hole and a hefty payoff. He practically beamed as he stepped up to a putt he had sunk thousands of times before. After the tournament, he would be asked if he had approached this particular shot any differently. “Absolutely not,” he would emphasize. “Every putt you hit is the same process. Go up there. Be committed to what you’re going to do. Hopefully it goes in.” Only this time it didn’t. A stunned crowd watched in disbelief as the ball skimmed past the hole. Tiger’s shot was just a bit off, but it cost him the lead. He took another putt, made par, and lost nearly a million dollars in winnings.

For professional golfers, every putt is a risky decision, one that can have big financial consequences. A putt is reasonably simple goal-directed action, yet each stroke requires more than just motor skill. Good golfers sink putts because they’re also good decision makers. Every putt requires a host of tough choices. Besides having to estimate how the ball will break, a player must choose between playing it safe—going with a softer stroke that will mean an easier following shot if things go badly—or going for the hole at the risk of overshooting. As the above example illustrates, even the best golfer in the world can make errors.

Those of us who aren’t golfers are not immune to the difficulty of making risky decisions. Though we (usually) play for smaller stakes than Tiger, we too spend our days navigating risky choices that can have significant consequences for our health, bank account, and overall well being. The question of how to best make decisions has fascinated humankind for centuries. For economists, the answer has always been relatively simple: making good decisions is a simple act of comparison shopping. A smart decision maker should start by listing all the possible choices for a given decision and then estimate the average payoff of each individual choice. Once the decision maker has all this information handy, he just needs to pick the choice with the highest expected payoff. Simple, right? Unfortunately, in practice the strategy of maximizing your expected return runs into a number of thorny issues.

Molecular Cut and Paste

The New Generation of Molecular Tools
[7.21.11]

INTRODUCTION
by Nathan Wolfe

I spend much of my life studying deadly viruses and central to my work has been the creation of a number of systems for keeping potentially devastating epidemics in check–from microbial field stations in far-flung places to computer platforms that crunch big data to detect outbreaks before they spread. This is exciting and important work, but the truth is that my joy comes from having a profound respect and certain love for microbes.

Since Antonie van Leeuwenhoek first saw the microbial world in the 17th century through his diminutive early microscopes, we have discovered that bacteria, archaea and viruses make up the majority of life on our planet. Far from a world of harmful bugs, our microbial planet is incredibly rich and deep – in fact the overwhelming majority of it completely unconcerned with vertebrates, let alone humans.

While the focus on the deadly microbes represents low hanging fruit for contemporary microbiologists like myself, it was refreshing to see William McEwan articulate the wider potential of bugs in his smart chapter in the welcomed 2nd volume of Max Brockman’s essay series highlighting young researchers – Future Science: Essays from the Cutting Edge.

McEwan begins and ends his essay with personal musings about his fabrication of a novel synthetic virus to accomplish his lab goals. He points out the irony that retroviruses, the family of viruses to which HIV belongs, may be some of most important tools in fighting AIDS—and that altering other viruses has the potential for potent targeted cancer chemotherapy.

The microbial world holds huge potential not just to harm but to help. As we learn more about the vast invisible biological world around us we'll find things that will amaze and enlighten us. Perhaps even save us.   

— Nathan Wolfe
 

WILLIAM MCEWAN is a virologist working on intracellular immunity to viruses. His research focuses on specific mechanisms in mammalian cells that actively overcome viral infection. He graduated with a BSc in genetics from University College London in 2005 and did a master’s degree and PhD at the University of Glasgow, researching immunity to lentiviruses in cats and lions. He is currently a postdoctoral researcher at the MRC Laboratory of Molecular Biology, Cambridge, U.K., where he continues to probe the biology of antiviral immunity.

NATHAN WOLFE is Lorry Lokey Visiting Professor of Human Biology at Stanford University and directs the Global Viral Forecasting Initiative. He is the author of The Viral Storm: The Dawn of a New Pandemic Age.

Excerpted from Future Science: Essays From The Cutting Edge, Edited by Max Brockman (Vintage Books, 2011)


MOLECULAR CUT AND PASTE

[WILLIAM MCEWAN:] This afternoon I received in the post a slim FedEx envelope containing four small vials of DNA. The DNA had been synthesized according to my instructions in under three weeks, at a cost of 39 U.S. cents per base pair (the rungs adenine-thymine or guanine-cytosine in the DNA ladder). The 10 micrograms I ordered are dried, flaky, and barely visible to the naked eye, yet once I have restored them in water and made an RNA copy of this template, they will encode a virus I have designed.

My virus will be self-replicating, but only in certain tissue-culture cells; it will cause any cell it infects to glow bright green and will serve as a research tool to help me answer questions concerning antiviral immunity. I have designed my virus out of parts—some standard and often used, some particular to this virus—using sequences that hail from bacteria, bacteriophages, jellyfish, and the common cold virus. By simply putting these parts together, I have infinitely increased their usefulness. What is extraordinary is that if I had done this experiment a mere eight years ago, it would have been a world first and unthinkable on a standard research grant. A combination of cheap DNA synthesis, freely accessible databases, and our ever expanding knowledge of protein science is conspiring to permit a revolution in creating powerful molecular tools.

WHO IS THE GREATEST BIOLOGIST OF ALL TIME?

[3.11.11]
"So who is the greatest biologist of all time? Good question. For most people it's got to be Darwin. I mean, Darwin is top dog, numero uno. He told us about evolution, he convinced us that evolution happened, and he gave us an explanation for it. I mean, there just wouldn't seem to be any competition. Okay, fine, well you might then say: Mendel. Mendel discovers transmission genetics, and that was pretty good. And I suppose then you have to go pretty far down the list to come to people like Watson and Crick, who just discovered the structure of DNA, which is just a bit of structural biology, really, a bit of biochemistry."
 
"Okay, but who is the real top dog? For me, the answer is absolutely clear. It's Aristotle. And it's a surprising answer because even though I suppose some biologists might know, should they happen to remember their first year textbooks, that Aristotle was the Father of Biology, they would still say, "well, yes, but he got everything wrong." And that, I think, is a canard. The thing about Aristotle - and this is why I love him - is that his thought was is so systematic, so penetrating, so vast, so strange – and yet he's undeniably a scientist."
— Armand Leroi

Leroi

ARMAND LEROI is a Professor of Evolutionary Developmental Biology at Imperial College London, and the author of Mutants: On Genetic Variatey and The Human Body

Arman Leroi's Edge Bio Page

Map

(Click Image to Enlarge)

An 1817 British Admiralty map of Kolpos Kallonis, the lagoon in Greece where Aristotle began the study of the biological world. Aristotle proposed that organisms were formed and maintained by their "souls," by which he meant the topography of their metabolic and regulatory networks. Superimposed within the lagoon, therefore, is a map of the regulatory network of a yeast cell: Aristotle’s vision realized in the 21st C.

 

WHO IS THE GREATEST BIOLOGIST OF ALL TIME?

Topic: 

  • LIFE
http://vimeo.com/79329040

"So who is the greatest biologist of all time? Good question. For most people it's got to be Darwin. I mean, Darwin is top dog, numero uno. He told us about evolution, he convinced us that evolution happened, and he gave us an explanation for it. I mean, there just wouldn't seem to be any competition. Okay, fine, well you might then say: Mendel. Mendel discovers transmission genetics, and that was pretty good.

Pages

Subscribe to RSS - LIFE