LIFE

Why We're Different

Topic: 

  • LIFE
https://vimeo.com/165217837

What we're trying to do in behavioral genetics and medical genetics is explain differences. It's important to know that we all share approximately 99 percent of our DNA sequence. If we sequence, as we can now readily do, all of our 3 billion base pairs of DNA, we will be the same at over 99 percent of all those bases. That's what makes us similar to each other. It makes us similar to chimps and most mammals. We're over 90 percent similar to all mammals. There's a lot of genetic similarity that's important from an evolutionary perspective, but it can't explain why we're different.

Why We're Different

[6.29.16]


What we're trying to do in behavioral genetics and medical genetics is explain differences. It's important to know that we all share approximately 99 percent of our DNA sequence. If we sequence, as we can now readily do, all of our 3 billion base pairs of DNA, we will be the same at over 99 percent of all those bases. That's what makes us similar to each other. It makes us similar to chimps and most mammals. We're over 90 percent similar to all mammals. There's a lot of genetic similarity that's important from an evolutionary perspective, but it can't explain why we're different. That's what we're up to, trying to explain why some children are reading disabled, or some people become schizophrenic, or why some people suffer from alcoholism, et cetera. We're always talking about differences. The only genetics that makes a difference is that 1 percent of the 3 billion base pairs. But that is over 10 million base pairs of DNA. We're looking at these differences and asking to what extent they cause the differences that we observe. 

ROBERT PLOMIN is a professor of behavioral genetics at King's College London and deputy director of the Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, Psychology and Neuroscience.  He is the author of The Blueprint: How DNA Makes Us Who We Are Robert Plomin's Edge Bio Page

The Augmented Human Being

Topic: 

  • LIFE
https://vimeo.com/151790708

There are now 2000 gene therapies where you’ll take a little piece of engineered DNA, put it inside of a viral coat so all the viral genes are gone, and you can put in, say, a human gene or you can have nonviral delivery, but the important thing is that you’re delivering it either inside of the human or you’re taking cells out of the human and putting the DNA in and then putting them back in. But you can do very powerful things like curing inherited diseases, curing infectious diseases.                                 

Power Over Nature

Topic: 

  • LIFE
https://vimeo.com/157194346

The big story of the 20th and the 21st century is that we’re learning to control the world better. With the development of quantum mechanics, we understand the fundamental principles of what matter is and how it behaves that’s adequate for all engineering purposes.                                 

LIFE

The "Best of Edge" Book Series
[3.14.16]

CONTENTS: Evolvability  Richard Dawkins  Genomic Imprinting  David Haig  A Full-Force Storm with Gale Winds Blowing  Robert Trivers  What Evolution Is  Ernst Mayr  Genetics Plus Time  Steve Jones  A United Biology  E. O. Wilson  Is Life Analog or Digital?  Freeman Dyson  Life: What a Concept!  Freeman Dyson, J. Craig Venter, George Church, Dimitar Sasselov, Seth Lloyd, Robert Shapiro  The Gene-Centric View: A Conversation  Richard Dawkins, J. Craig Venter  The Nature of Normal Human Variety Armand Marie Leroi  Brains Plus Brawn  Daniel Lieberman  Mapping the Neanderthal Genome  Svante Pääbo  On Biocomputation  J. Craig Venter, Ray Kurzweil, Rodney Brooks  Engineering Biology  Drew Endy  Eat Me Before I Eat You: A New Foe for Bad Bugs  Kary Mullis  Duck Sex and Aesthetic Evolution  Richard Prum  Toxo Robert Sapolsky  The Adjacent Possible Stuart Kauffman (with an introduction by John Brockman)   

Image Map

Power Over Nature

New Phenomena That Will Change and Enrich Our Understanding of Fundamentals
[4.20.16]


The big story of the 20th and the 21st century is that we’re learning to control the world better. With the development of quantum mechanics, we understand the fundamental principles of what matter is and how it behaves that’s adequate for all engineering purposes.                                 

The limitation is just our imagination and our ability to calculate the consequences of the laws. We’re getting better at both of those as we gain experience. We have more imagination. As computing develops, we learn how to calculate the consequences of the laws better and better. There’s also a feedback cycle: when you understand matter better, you can design better computers, which will enable you to calculate better. It's kind of an ascending helix.

FRANK WILCZEK, currently the Herman Feshbach Professor of Physics at MIT, has received many prizes for his work in physics, including the Nobel Prize (2004) for work he did as a graduate student at Princeton University. Frank Wilczek's Edge Bio Page

The Genomic Ancient DNA Revolution

Topic: 

  • LIFE
https://vimeo.com/153702765

My experience collaborating with Svante since 2007, has been that the data we’ve looked at from the incredible samples they have has yielded surprise after surprise. Nobody had ever gotten to look at data like this before. First, there were the Neanderthals, and then there was this pinky bone from Southern Siberia. At the end of the Neanderthal project, Svante told me we have this amazing genome-wide data from another archaic human, from a little pinky bone of a little girl from a Southern Siberian cave, and asked if I'd like to get involved in analyzing it.

The Genomic Ancient DNA Revolution

A New Way to Investigate the Past
[2.1.16]

My experience collaborating with Svante since 2007, has been that the data we’ve looked at from the incredible samples they have has yielded surprise after surprise. Nobody had ever gotten to look at data like this before. First, there were the Neanderthals, and then there was this pinky bone from Southern Siberia. At the end of the Neanderthal project, Svante told me we have this amazing genome-wide data from another archaic human, from a little pinky bone of a little girl from a Southern Siberian cave, and asked if I'd like to get involved in analyzing it.

When we analyzed it, it was an incredible surprise: This individual was not a Neanderthal. They were in fact much more distantly related to a Neanderthal than any two humans are today from each other, and it was not a modern human. It was some very distant cousin of a Neanderthal that was living in Siberia in Central Asia at the time that this girl lived.

When we analyzed the genome of this little girl, we saw that she was related to people in New Guinea and Australia. A person related to her had contributed about 5 percent of the genomes to people in New Guinea and Australia and related people—an interbreeding event nobody had known about before. It was completely unexpected. It wasn’t in anybody’s philosophy or anybody’s prediction. It was a new event that was driven by the data and not by people’s presuppositions or previous ideas.

This is what ancient DNA does for us. When you look at the data, it doesn’t always just play into one person’s theory or the other; it doesn’t just play into the Indo-European steppe hypothesis or the Anatolian hypothesis. Sometimes it raises something completely new, like the Denisovan finger bone and the interbreeding of a gene flow from Denisovans into Australians and New Guineans. 

DAVID REICH is a geneticist and professor in the Department of Genetics at the Harvard Medical School. David Reich's Edge Bio Page

THE REALITY CLUB: Robert Trivers

The Augmented Human Being

[3.30.16]

There are now 2000 gene therapies where you’ll take a little piece of engineered DNA, put it inside of a viral coat so all the viral genes are gone, and you can put in, say, a human gene or you can have nonviral delivery, but the important thing is that you’re delivering it either inside of the human or you’re taking cells out of the human and putting the DNA in and then putting them back in. But you can do very powerful things like curing inherited diseases, curing infectious diseases.                                 

For example, you can edit out the receptor for the HIV virus and cure AIDS patients in a way that's not dependent upon vaccines and multidrug resistance, which has plagued the HIV AIDS story from the very beginning. You’re basically making a human being which is now augmented in a certain sense so that, unlike most humans, they are resistant to this major plague of mankind—HIV AIDS.              

There are now people walking around who are genetically modified: There are some that are resistant to AIDS because they have had their T cells, or more generally, their blood cells modified. There are children that have been cured of blindness by gene therapy. None of this is CRISPR, but it’s in the same vein. CRISPR is overtaking it very quickly and it’s drafting behind all the beautiful work that’s been done with delivery of DNA, delivery of genetic components to patients.

GEORGE CHURCH is a professor of genetics at Harvard Medical School and director of the Personal Genome Project. George Church's Edge Bio Page

Popper Versus Bacon

Topic: 

  • LIFE
https://vimeo.com/126008620

People have to go around measuring things. There's no escape from that for most of that type of work. There's a deep relationship between the two. No one's going to come up with a model that works without going and comparing with experiment. But it is the intelligent use of experimental measurements that we're after there because that goes to this concept of Bayesian methods. I will perform the right number of experiments to make measurements of, say, the time series evolution of a given set of proteins.

Pages

Subscribe to RSS - LIFE