Conversations

REMEMBERING MURRAY

[5.28.19]

MURRAY GELL-MANN
September 15, 1929 – May 24, 2019
  

[ED. NOTE: Upon learning of the death of long-time friend, and colleague Murray Gell-Mann, I posed the question below to the Edgies who knew and/or worked with him. —JB]

Can you tell us a personal story about Murray and yourself (about physics, or not)?  


THE REALITY CLUB
Leonard Susskind, George Dyson, Stuart Kauffman, John Brockman, Julian Barbour, Freeman Dyson, Neil Gershenfeld, Paul Davies, Virginia Louise Trimble, Alan Guth, Gino Segre, Sara Lippincott, Emanuel Derman, Jeremy Bernstein, George Johnson, Seth Lloyd, W. Brian Arthur, W. Daniel Hillis, Frank Tipler, Karl Sabbagh, Daniel C. Dennett


[ED. NOTE: For starters, here's a story Murray told about himself when I spent time with him in Santa Fe over Christmas vacation in 2003, excerpted from "The Making of a PhysicistEdge, June 3, 2003—JB]

Uncharacteristically, I discussed my application to Yale with my father, who asked, "What were you thinking of putting down?" I said, "Whatever would be appropriate for archaeology or linguistics, or both, because those are the things I'm most enthusiastic about. I'm also interested in natural history and exploration."

He said, "You'll starve!"

After all, this was 1944 and his experiences with the Depression were still quite fresh in his mind; we were still living in genteel poverty. He could have quit his job as the vault custodian in a bank and taken a position during the war that would have utilized his talents — his skill in mathematics, for example — but he didn't want to take the risk of changing jobs. He felt that after the war he would regret it, so he stayed where he was. This meant that we really didn't have any spare money at all.

I asked him, "What would you suggest?"

He mentioned engineering, to which I replied, "I'd rather starve. If I designed anything it would fall apart." And sure enough when I took an aptitude test a year later I was advised to take up nearly anything but engineering."

Then my father suggested, "Why don't we compromise — on physics?"


Introduction
By Geoffrey West

Murray Gell-Mann was one of the great scientists of the 20th century, one of its few renaissance people and a true polymath. He is best known for his seminal contributions to fundamental physics, for helping to bring order and symmetry to the apparently chaotic world of the elementary particles and the fundamental forces of nature. He dominated the field from the early ‘50s, when he was still in his twenties, up through the late ‘70s. Basically, he ran the show. By modern standards he didn’t publish a lot, but when he did we all hung on every word. It is an amazing litany of accomplishments: strangeness, the renormalization group, color and quantum chromodynamics, and of course, quarks and SU(3), for which he won the Nobel prize in 1969.

He was the Robert Andrews Millikan Professor Emeritus of Theoretical Physics at the California Institute of Technology, a cofounder of the Santa Fe Institute, where he was a Distinguished Fellow; a former director of the J.D. and C.T. MacArthur Foundation; one of the Global Five Hundred honored by the U.N. Environment Program; a former Citizen Regent of the Smithsonian Institution; a former member of the President's Committee of Advisors on Science and Technology; and the author of The Quark and the Jaguar: Adventures in the Simple and the Complex.

Despite his extraordinary contributions to high-energy physics, Murray maintained throughout his life an enduring passion for understanding how the messy world of culture, economies, ecologies and human interaction, and especially language, evolved from the beautifully ordered world of the fundamental laws of nature. How did complexity evolve from simplicity? Can we develop a generic science of complex adaptive systems? In the ‘80s he helped found the Santa Fe Institute as a hub on the academic landscape for addressing such vexing questions in a radically transdisciplinary environment.

Murray Gell-Mann knew, understood and was interested in everything, spoke every language on the planet, and probably those on other planets too, and was not shy in letting you know that he did. He was infamous not just for correcting your facts or your logic, but most annoyingly to some, for correcting how you should pronounce your name, your place of birth, or whatever. Luckily my name is West but that never stopped him from lecturing me many times on the Somerset dialect that I spoke as a young child.

Although he decidedly did not suffer fools and would harshly, sometimes almost cruelly, criticize sloppy thinking or incorrect factual statements, he would intensely engage with anyone regardless of their status or standing if he felt they had something to contribute. I rarely felt comfortable when discussing anything with him, whether a question of physics or lending him money, expecting to be clobbered at any moment because I had made some stupid comment or pronounced something wrong.

Murray could be a very difficult man…but what a mind! However, he loved to collaborate, to discuss ideas, and was amazingly open and inclusive even if he did dominate the proceedings. By the time we had become colleagues at SFI, I had become less and less sensitive to the master’s anticipated criticism or even to his occasional praise; the potential trepidation had pretty much disappeared and our relationship had evolved into friendship and collegiality, just in time for me to become his boss. Negotiating with Murray over a perplexing physics question is one thing, but try negotiating with him over salary and secretarial support, then you’ll really see him in action. To quote Hamlet: "He was a man. Take him for all in all. I shall not look upon his like again."

GEOFFREY WEST is a theoretical physcicist; Shannan Distinguished Professor and Past President, Santa Fe Institute; Author, ScaleGeoffrey West's Edge Bio page.

On Edge

[5.22.19]

 

ON EDGE
by Daniel Kahneman

It seems like yesterday, but Edge has been up and running for twenty-two years. Twenty-two years in which it has channeled a fast-flowing river of ideas from the academic world to the intellectually curious public. The range of topics runs from the cosmos to the mind and every piece allows the reader at least a glimpse and often a serious look at the intellectual world of a thought leader in a dynamic field of science. Presenting challenging thoughts and facts in jargon-free language has also globalized the trade of ideas across scientific disciplines. Edge is a site where anyone can learn, and no one can be bored.

The statistics are awesome: The Edge conversation is a "manuscript" of close to 10 million words, with nearly 1,000 contributors whose work and ideas are presented in more than 350 hours of video, 750 transcribed conversations, and thousands of brief essays. And these activities have resulted in the publication of 19 printed volumes of short essays and lectures in English and in foreign language editions throughout the world.

The public response has been equally impressive: Edge's influence is evident in its Google Page Rank of  "8", the same as The Atlantic, The Economist, The New Yorker, The Wall Street Journal, and the Washington Post, in the enthusiastic reviews in major general-interest outlets, and in the more than 700,000 books sold. 

Of course, none of this would have been possible without the increasingly eager participation of scientists in the Edge enterprise. And a surprise: brilliant scientists can also write brilliantly! Answering the Edge question evidently became part of the annual schedule of many major figures in diverse fields of research, and the steadily growing number of responses is another measure of the growing influence of the Edge phenomenon. Is now the right time to stop? Many readers and writers will miss further installments of the annual Edge question—they should be on the lookout for the next form in which the Edge spirit will manifest itself.

Possible Minds: 25 Ways of Looking at AI

Chapter 1 - "Wrong, but More Relevant Than Ever" - on Slate
[2.28.19]

The Human Use of Human Beings, Norbert Wiener’s 1950 popularization of his highly influential book Cybernetics: or Control and Communication in the Animal and the Machine (1948)investigates the interplay between human beings and machines in a world in which machines are becoming ever more computationally capable and powerful. It is a remarkably prescient book, and remarkably wrong. Written at the height of the Cold War, it contains a chilling reminder of the dangers of totalitarian organizations and societies, and of the danger to democracy when it tries to combat totalitarianism with totalitarianism’s own weapons.

Possible Minds: 25 Ways of Looking at AI

Lightning talks by thirteen “Possible Minders” at the Brattle Theatre—a Harvard Bookstore Event
[2.21.19]

Lightning talks (1 hour, 28 minutes) from thirteen experts: Mary Catherine Bateson, Kate Darling, Peter Galison, Neil Gershenfeld, Alison Gopnik, Caroline Jones, David Kaiser, Seth Lloyd, Hans Ulrich Obrist, Alex Pentland, Steven Pinker, Max TegmarkStephen Wolfram Thursday, February 21, 2019  — A Harvard Bookstore EventSubscribe

Possible Minds: 25 Ways of Looking at AI

Chapter 21 - "AIs Versus Four-Year-Olds" - First Serial on Smithsonian
[2.22.19]

Everyone’s heard about the new advances in artificial intelligence, and especially machine learning. You’ve also heard utopian or apocalyptic predictions about what those advances mean. They have been taken to presage either immortality or the end of the world, and a lot has been written about both of those possibilities. But the most sophisticated AIs are still far from being able to solve problems that human four-year-olds accomplish with ease. In spite of the impressive name, artificial intelligence largely consists of techniques to detect statistical patterns in large data sets. There is much more to human learning

Biological and Cultural Evolution

Six Characters in Search of an Author
[2.19.19]

In the near future, we will be in possession of genetic engineering technology which allows us to move genes precisely and massively from one species to another. Careless or commercially driven use of this technology could make the concept of species meaningless, mixing up populations and mating systems so that much of the individuality of species would be lost. Cultural evolution gave us the power to do this. To preserve our wildlife as nature evolved it, the machinery of biological evolution must be protected from the homogenizing effects of cultural evolution.

Unfortunately, the first of our two tasks, the nurture of a brotherhood of man, has been made possible only by the dominant role of cultural evolution in recent centuries. The cultural evolution that damages and endangers natural diversity is the same force that drives human brotherhood through the mutual understanding of diverse societies. Wells's vision of human history as an accumulation of cultures, Dawkins's vision of memes bringing us together by sharing our arts and sciences, Pääbo's vision of our cousins in the cave sharing our language and our genes, show us how cultural evolution has made us what we are. Cultural evolution will be the main force driving our future.

FREEMAN DYSON is an emeritus professor of physics at the Institute for Advanced Study in Princeton. In addition to fundamental contributions ranging from number theory to quantum electrodynamics, he has worked on nuclear reactors, solid-state physics, ferromagnetism, astrophysics, and biology, looking for problems where elegant mathematics could be usefully applied. His books include Disturbing the UniverseWeapons and HopeInfinite in All DirectionsMaker of Patterns, and Origins of LifeFreeman Dyson's Edge Bio Page 


BIOLOGICAL AND CULTURAL EVOLUTION: SIX CHARACTERS IN SEARCH OF AN AUTHOR

In the Pirandello play, "Six Characters in Search of an Author", the six characters come on stage, one after another, each of them pushing the story in a different unexpected direction. I use Pirandello's title as a metaphor for the pioneers in our understanding of the concept of evolution over the last two centuries. Here are my six characters with their six themes.

1. Charles Darwin (1809-1882): The Diversity Paradox.
2. Motoo Kimura (1924-1994): Smaller Populations Evolve Faster.
3. Ursula Goodenough (1943- ): Nature Plays a High-Risk Game.
4. Herbert Wells (1866-1946): Varieties of Human Experience.
5. Richard Dawkins (1941- ): Genes and Memes.
6. Svante Pääbo (1955- ): Cousins in the Cave.

The story that they are telling is of a grand transition that occurred about fifty thousand years ago, when the driving force of evolution changed from biology to culture, and the direction changed from diversification to unification of species. The understanding of this story can perhaps help us to deal more wisely with our responsibilities as stewards of our planet.

Pages

Subscribe to RSS - Conversations