TECHNOLOGY

The Chef

[1.23.97]

Introduction
By John Brockman

Nathan Myhrvold is a bridge between the scientists of the third culture and the digerati. He is an accomplished scientist who is at the helm of Microsoft's massive research program.

Last year, the following email message arrived: "Thirteen years ago I went on a three month leave of absence from a job and, much to the consternation of my employer, I subsequently broke my promise and never returned. I know what you're thinking. That's just the sort of irresponsible act you've come to expect from the likes of me. That's what my boss thought at the time thought too, and with good reason. Amazingly enough, I'm still on good terms with him. His name is Stephen Hawking, and he's one of the world's foremost physicists. Meanwhile, as a direct result of my truancy, I'm one of the world's backmost physicists. As luck would have it, I've managed to scrape by with a job at Microsoft."

Thus read Nathan Myhrvold's email invitation to a dinner at the Seattle Zoo with "the current occupant of the Lucasian Chair of Mathematics, a position once held by Isaac Newton." Nathan, who went to Cambridge as a postdoc after receiving his doctorate from Princeton, worked with Hawking on research in cosmology, quantum field theory in curved space time, and quantum theories of gravitation. (Today, thirteen years later, he is a member of the board of trustees of the Institute for Advanced Study in Princeton, New Jersey, and he serves on the advisory board of Princeton University's department of physics.)

The guest list at Nathan's gala dinner ranged from New York investment banker Herbert Allen, Jr. to Stephen Hawking, from NBC President Robert Wright to Danny Hillis. What makes him very unique is that in addition to his business and scientific interests, he is a master French chef who has finished first and second in the world championship of barbecue in Memphis, Tennessee. He also works as an assistant chef at one of Seattle's leading French restaurants.

Nathan Myhrvold is chief technology officer at Microsoft corporation, reporting to Microsoft CEO Bill Gates as a member of the Executive Committee. This group is responsible for the broad strategic and business planning for the entire company. He also is responsible for the Advanced Technology and Research Group, which has a budget of more than $2 billion a year. Previously he was group vice president of Applications and Content, which comprised a number of Microsoft divisions, including Desktop Applications, Consumer, Research, and Microsoft On line Systems.

JB

The Chef talks about selected Digerati...

SOMETHING THAT GOES BEYOND OURSELVES

Chapter 23: Close To The Singularity
[5.7.96]

New technology equals new perceptions. As we create tools, we re-create ourselves in their image. Newtonian mechanics gave birth to the metaphor of the heart as a pump. A generation ago, with the advent of cybernetics, information science, and artificial intelligence, we began to think of the brain as a computer. We now have arrived at a new intersection of the empirical and the epistemological. Recent technological breakthroughs in the realm of massively parallel computers and their associated algorithms are having a major impact on the images we have of ourselves and our place in the universe. We have broken through the von Neumann bottleneck of the serial computer.

W. Daniel Hillis brings together, in full circle, many of the ideas in this book: Marvin Minsky's society of mind; Christopher G. Langton's artificial life; Richard Dawkins' gene's-eye view; the plectics practiced at Santa Fe. Hillis developed the algorithms that made possible the massively parallel computer. He began in physics and then went into computer science — where he revolutionized the field — and now he has begun to bring his algorithms to bear on the study of evolution. He sees the autocatalytic effect of fast computers, which lets us design better and faster computers faster, as analogous to the evolution of intelligence. At MIT in the late seventies, Hillis built his "connection machine," a computer that makes use of integrated circuits and, in its parallel operations, closely reflects the workings of the human mind. In 1983, he spun off a computer company called Thinking Machines, which set out to build the world's fastest supercomputer by utilizing parallel architecture.

The massively parallel computational model is critical to the whole set of ideas presented in this book. Hillis's computers, which are fast enough to simulate the process of evolution itself, have shown that programs of random instructions can, by competing, produce new generations of programs — an approach that may well lead to the first machine that truly "thinks." Hillis's work demonstrates that when systems are not engineered but instead allowed to evolve — to build themselves — then the resultant whole is greater than the sum of its parts. Simple entities working together produce some complex thing that transcends them; the implications for biology, engineering, and physics are enormous.


THE COACH

[1.6.97]

THE REALITY CLUB: Scott McNealy, John Dvorak


Doerr: I'm an alumnus of Intel, possibly the best managed company in the country. A child of the microprocessor, a "refugee" from the semi-conductor industry. Before Intel I earned a degree in electrical engineering from Rice University in Houston Texas. Came to Silicon Valley in 1974 without a job -- rented half a garage apartment near Stanford for $55 a month from a professor. Wanted to start a company with some friends and fancied that I'd apprentice myself to a venture capital firm. (Heard that venture capital had something to do with starting companies). However, in 1974 there weren't any summer jobs in venture capital.

Fortunately, Bill Davidow and Jim Lally hired me at a small chip-maker called Intel. Intel had just invented the 8-bit microprocessor. It was exciting. I stayed there through the remainder of the decade.

In 1980 I joined the partnership Kleiner Perkins Caufield and Byers (KPCB). Was lucky again, in the right place at the right time. In the early 80's the microprocessor was the common denominator for a whole industry of rapidly growing new companies. In fact from 1980 to 1990, the new companies based on the microprocessor helped create a hundred billion dollars a year revenues. And a hundred billion dollars of stock value. That's the largest single legal creation of wealth we've witnessed on the planet. In a decade. (In 1990 Microsoft was about a third of that value. KPCB sponsored new companies representing another third.)

This summer I became a part-time political activist, helping organize the defeat of California's proposition 211.

Chapter 8 "SMART MACHINES"

[5.1.96]

Roger Schank: Marvin Minsky is the smartest person I've ever known. He's absolutely full of ideas, and he hasn't gotten one step slower or one step dumber. One of the things about Marvin that's really fantastic is that he never got too old. He's wonderfully childlike. I think that's a major factor explaining why he's such a good thinker. There are aspects of him I'd like to pattern myself after. Because what happens to some scientists is that they get full of their power and importance, and they lose track of how to think brilliant thoughts. That's never happened to Marvin.

__________

MARVIN MINSKY is a mathematician and computer scientist; Toshiba Professor of Media Arts and Sciences at the Massachusetts Institute of Technology; cofounder of MIT's Artificial Intelligence Laboratory, Logo Computer Systems, Inc., and Thinking Machines, Inc.; laureate of the Japan Prize (1990), that nation's highest distinction in science and technology; author of eight books, including The Society of Mind (1986). 

Marvin Minsky's Edge Bio Page

Part Two A COLLECTION OF KLUDGES

[5.1.96]

One of the central metaphors of the third culture is computation. The computer does computation and the mind does computation. To understand what makes birds fly, you may look at airplanes, because there are principles of flight and aerodynamics that apply to anything that flies. That is how the idea of computation figures into the new ways in which scientists are thinking about complicated systems.

Part Five SOMETHING THAT GOES BEYOND OURSELVES

[5.1.96]

New technology equals new perceptions. As we create tools, we re-create ourselves in their image. Newtonian mechanics gave birth to the metaphor of the heart as a pump. A generation ago, with the advent of cybernetics, information science, and artificial intelligence, we began to think of the brain as a computer. We now have arrived at a new intersection of the empirical and the epistemological. Recent technological breakthroughs in the realm of massively parallel computers and their associated algorithms are having a major impact on the images we have of ourselves and our place in the universe. We have broken through the von Neumann bottleneck of the serial computer.

W. Daniel Hillis brings together, in full circle, many of the ideas in this book: Marvin Minsky's society of mind; Christopher G. Langton's artificial life; Richard Dawkins' gene's-eye view; the plectics practiced at Santa Fe. Hillis developed the algorithms that made possible the massively parallel computer. He began in physics and then went into computer science — where he revolutionized the field — and now he has begun to bring his algorithms to bear on the study of evolution. He sees the autocatalytic effect of fast computers, which lets us design better and faster computers faster, as analogous to the evolution of intelligence. At MIT in the late seventies, Hillis built his "connection machine," a computer that makes use of integrated circuits and, in its parallel operations, closely reflects the workings of the human mind. In 1983, he spun off a computer company called Thinking Machines, which set out to build the world's fastest supercomputer by utilizing parallel architecture.

The massively parallel computational model is critical to the whole set of ideas presented in this book. Hillis's computers, which are fast enough to simulate the process of evolution itself, have shown that programs of random instructions can, by competing, produce new generations of programs — an approach that may well lead to the first machine that truly "thinks." Hillis's work demonstrates that when systems are not engineered but instead allowed to evolve — to build themselves — then the resultant whole is greater than the sum of its parts. Simple entities working together produce some complex thing that transcends them; the implications for biology, engineering, and physics are enormous.

Pages

Subscribe to RSS - TECHNOLOGY