Special Events

Is Superintelligence Impossible?

On Possible Minds: Philosophy and AI with Daniel C. Dennett and David Chalmers
[4.10.19]

[ED. NOTE: On Saturday, March 9th, more than 1200 people jammed into Pioneer Works in Red Hook, Brooklyn, for a conversation between two of our greatest philosophers, David Chalmers and Daniel C. Dennett:  "Is Superintelligence Impossible?" the next event in Edge's ongoing "Possible Minds Project." Watch the video, listen to the EdgeCast, read the transcript. Thanks  to  physicist, artist, author, and Edgie Janna LevinDirector of Sciences at Pioneer Works, who presented the event with the support of Science Sandbox, a Simons Foundation initiative. —JB]


Reality Club Discussion: Andy Clark


Somebody said that the philosopher is the one who says, "We know it’s possible in practice, we’re trying to figure out if it’s possible in principle." Unfortunately, philosophers sometimes spend too much time worrying about logical possibilities that are importantly negligible in every other regard. So, let me go on the record as saying, yes, I think that conscious AI is possible because, after all, what are we? We’re conscious. We’re robots made of robots made of robots. We’re actual. In principle, you could make us out of other materials. Some of your best friends in the future could be robots. Possible in principle, absolutely no secret ingredients, but we’re not going to see it. We’re not going to see it for various reasons. One is, if you want a conscious agent, we’ve got plenty of them around and they’re quite wonderful, whereas the ones that we would make would be not so wonderful. —Daniel C. Dennett

One of our questions here is, is superintelligence possible or impossible? I’m on the side of possible. I like the possible, which is one reason I like John’s theme, "Possible Minds." That’s a wonderful theme for thinking about intelligence, both natural and artificial, and consciousness, both natural and artificial. … The space of possible minds is absolutely vast—all the minds there ever have been, will be, or could be. Starting with the actual minds, I guess there have been a hundred billion or so humans with minds of their own. Some pretty amazing minds have been in there. Confucius, Isaac Newton, Jane Austen, Pablo Picasso, Martin Luther King, on it goes. But still, those hundred billion minds put together are just the tiniest corner of this space of possible minds. —David Chalmers

David Chalmers is University Professor of Philosophy and Neural Science and co-director of the Center for Mind, Brain, and Consciousness at New York University. He is best known for his work on consciousness, including his formulation of the “hard problem” of consciousness;  Daniel C. Dennett is University Professor and Austin B. Fletcher Professor of Philosophy and director of the Center for Cognitive Studies at Tufts University. He is the author of a dozen books, including Consciousness Explained, and, most recently, From Bacteria to Bach and Back: The Evolution of Minds;  John Brockman, moderator, is a cultural impresario whose career has encompassed the avant-garde art world, science, books, software, and the Internet. He is the author of By The Late John Brockman and The Third Culture; editor of the Edge Annual Question book series, and Possible Minds: 25 Ways of Looking at AI.

 

The Overdue Debate


Front Page

DEFGH Nr. 63, Freitag, 15. März 2019. 

Collage: Stefan Dimitrov

The Ghost in the Machine
Artificial intelligence inspires wild fantasies, but remains hard to imagine. A SZ series creates clarity. 

__________________________________________________

 
                    
 

__________________________________________________

Artificial intelligence:
A new series brings science and culture together to fathom the inexplicable

​_________________________________________________

Possible Minds

25 Ways of Looking at AI
[1.30.19]

Brockman and Minksy by Jean Pigozzi
B
rockman and Minsky, 1985       (enlarge      (Photo: Jean Pigozzi)

"Intelligences born and intelligences made have a lot to offer each other. For that beneficial blend to occur, the contextual framing that the voices in this book spell out will be crucial." 
—Stewart Brand

"While the [Possible Minds] authors disagree on the answers, they agree on the major question: what dangers might AI present to humankind? Within that framework, the essays offer a host of novel ideas. . . . Enlightening, entertaining, and exciting reading."—Publishers Weekly

"Pithy essays on artificial intelligence. . . . Readers . . . will not find a better introduction than this book."—Kirkus 

"Brockman, founder of the online salon Edge.org, corrals 25 big brains—ranging from Nobel Prize-winning physicist Frank Wilczek to roboticist extraordinaire Rodney Brooks—to opine on this exhilarating, terrifying future."
Inc. ("10 Business Books You Need to Read in 2019")



Epistemic Virtues

[8.21.19]

I’m interested in the question of epistemic virtues, their diversity, and the epistemic fears that they’re designed to address. By epistemic I mean how we gain and secure knowledge. What I’d like to do here is talk about what we might be afraid of, where our knowledge might go astray, and what aspects of our fears about how what might misfire can be addressed by particular strategies, and then to see how that’s changed quite radically over time.

~~

James Clerk Maxwell, just by way of background, had done these very mechanical representations of electromagnetism—gears and ball bearings, and strings and rubber bands. He loved doing that. He’s also the author of the most abstract treatise on electricity and magnetism, which used the least action principle and doesn’t go by the pictorial, sensorial path at all. In this very short essay, he wrote, "Some people gain their understanding of the world by symbols and mathematics. Others gain their understanding by pure geometry and space. There are some others that find an acceleration in the muscular effort that is brought to them in understanding, in feeling the force of objects moving through the world. What they want are words of power that stir their souls like the memory of childhood. For the sake of persons of these different types, whether they want the paleness and tenuity of mathematical symbolism, or they want the robust aspects of this muscular engagement, we should present all of these ways. It’s the combination of them that give us our best access to truth." 

PETER GALISON is a science historian; Joseph Pellegrino University Professor and co-founder of the Black Hole Initiative at Harvard University; and author of Einstein's Clocks and Poincaré’s Maps: Empires of Time. Peter Galison's Edge Bio Page

[ED. NOTE:] As a follow-up to the completion of the book Possible Minds: 25 Ways of Looking at AI, we are continuing the conversation as the “Possible Minds Project.” The first meeting was at Winvian Farm in Morris, CT. Over the next few months we are rolling out the fifteen talks—videos, EdgeCasts, transcripts.

From left: W. Daniel HillisNeil GershenfeldFrank WilczekDavid ChalmersRobert AxelrodTom GriffithsCaroline JonesPeter GalisonAlison GopnikJohn BrockmanGeorge DysonFreeman DysonSeth LloydRod BrooksStephen WolframIan McEwan. Project participants in absentia: George M. ChurchDaniel KahnemanAlex "Sandy" PentlandVenki RamakrishnanAndy Clark. (Click to expand photo)


EPISTEMIC VIRTUES

PETER GALISON: I’m interested in the question of epistemic virtues, their diversity, and the epistemic fears that they’re designed to address. By epistemic I mean how we gain and secure knowledge. What I’d like to do here is talk about what we might be afraid of, where our knowledge might go astray, and what aspects of our fears about how what might misfire can be addressed by particular strategies, and then to see how that’s changed quite radically over time.

The place where Lorraine Daston and I focused in the study of objectivity, for example, was in these atlases, these compendia of scientific images that gave you the basic working objects of different domains—atlases of clouds, atlases of skulls, atlases of plants, atlases in the later period of elementary particles. These are volumes, literary objects, and eventually digital objects that were used to help classify and organize the ground objects of different scientific domains.

AI That Evolves in the Wild

[8.14.19]

I’m interested not in domesticated AI—the stuff that people are trying to sell. I'm interested in wild AI—AI that evolves in the wild. I’m a naturalist, so that’s the interesting thing to me. Thirty-four years ago there was a meeting just like this in which Stanislaw Ulam said to everybody in the room—they’re all mathematicians—"What makes you so sure that mathematical logic corresponds to the way we think?" It’s a higher-level symptom. It’s not how the brain works. All those guys knew fully well that the brain was not fundamentally logical.

We’re in a transition similar to the first Macy Conferences. The Teleological Society, which became the Cybernetics Group, started in 1943 at a time of transition, when the world was full of analog electronics at the end of World War II. We had built all these vacuum tubes and suddenly there was free time to do something with them, so we decided to make digital computers. And we had the digital revolution. We’re now at exactly the same tipping point in history where we have all this digital equipment, all these machines. Most of the time they’re doing nothing except waiting for the next single instruction. The funny thing is, now it’s happening without people intentionally. There we had a very deliberate group of people who said, "Let’s build digital machines." Now, I believe we are building analog computers in a very big way, but nobody’s organizing it; it’s just happening.

GEORGE DYSON is a historian of science and technology and author of Darwin Among the Machines and Turing’s Cathedral. George Dyson's Edge Bio Page

The Language of Mind

[8.8.19]

Will every possible intelligent system somehow experience itself or model itself as having a mind? Is the language of mind going to be inevitable in an AI system that has some kind of model of itself? If you’ve just got an AI system that's modeling the world and not bringing itself into the equation, then it may need the language of mind to talk about other people if it wants to model them and model itself from the third-person perspective. If we’re working towards artificial general intelligence, it's natural to have AIs with models of themselves, particularly with introspective self-models, where they can know what’s going on in some sense from the first-person perspective.

Say you do something that negatively affects an AI, something that in an ordinary human would correspond to damage and pain. Your AI is going to say, "Please don’t do that. That’s very bad." Introspectively, it’s a model that recognizes someone has caused one of those states it calls pain. Is it going to be an inevitable consequence of introspective self-models in AI that they start to model themselves as having something like consciousness? My own suspicion is that there's something about the mechanisms of self-modeling and introspection that are going to naturally lead to these intuitions, where an AI will model itself as being conscious. The next step is whether an AI of this kind is going to naturally experience consciousness as somehow puzzling, as something that potentially is hard to square with basic underlying mechanisms and hard to explain.

DAVID CHALMERS is University Professor of Philosophy and Neural Science and co-director of the Center for Mind, Brain, and Consciousness at New York University. He is best known for his work on consciousness, including his formulation of the "hard problem" of consciousness. David Chalmers's Edge Bio Page

Morphogenesis for the Design of Design

[7.31.19]

As we work on the self-reproducing assembler, and writing software that looks like hardware that respects geometry, they meet in morphogenesis. This is the thing I’m most excited about right now: the design of design. Your genome doesn’t store anywhere that you have five fingers. It stores a developmental program, and when you run it, you get five fingers. It’s one of the oldest parts of the genome. Hox genes are an example. It’s essentially the only part of the genome where the spatial order matters. It gets read off as a program, and the program never represents the physical thing it’s constructing. The morphogenes are a program that specifies morphogens that do things like climb gradients and symmetry break; it never represents the thing it’s constructing, but the morphogens then following the morphogenes give rise to you.

What’s going on in morphogenesis, in part, is compression. A billion bases can specify a trillion cells, but the more interesting thing that’s going on is almost anything you perturb in the genome is either inconsequential or fatal. The morphogenes are a curated search space where rearranging them is interesting—you go from gills to wings to flippers. The heart of success in machine learning, however you represent it, is function representation. The real progress in machine learning is learning representation. How you search hasn’t changed all that much, but how you represent search has. These morphogenes are a beautiful way to represent design. Technology today doesn’t do it. Technology today generally doesn’t distinguish genotype and phenotype in the sense that you explicitly represent what you’re designing. In morphogenesis, you never represent the thing you’re designing; it's done in a beautifully abstract way. For these self-reproducing assemblers, what we’re building is morphogenesis for the design of design. Rather than a combinatorial search over billions of degrees of freedom, you search over these developmental programs. This is one of the core research questions we’re looking at.

NEIL GERSHENFELD is the director of MIT’s Center for Bits and Atoms; founder of the global fab lab network; the author of FAB; and co-author (with Alan Gershenfeld & Joel Cutcher-Gershenfeld) of Designing Reality. Neil Gershenfeld's Edge Bio Page

Ecology of Intelligence

[7.23.19]

I don't think a singularity is imminent, although there has been quite a bit of talk about it. I don't think the prospect of artificial intelligence outstripping human intelligence is imminent because the engineering substrate just isn’t there, and I don't see the immediate prospects of getting there. I haven’t said much about quantum computing, other people will, but if you’re waiting for quantum computing to create a singularity, you’re misguided. That crossover, fortunately, will take decades, if not centuries.

There’s this tremendous drive for intelligence, but there will be a long period of coexistence in which there will be an ecology of intelligence. Humans will become enhanced in different ways and relatively trivial ways with smartphones and access to the Internet, but also the integration will become more intimate as time goes on. Younger people who interact with these devices from childhood will be cyborgs from the very beginning. They will think in different ways than current adults do.

FRANK WILCZEK is the Herman Feshbach Professor of Physics at MIT, recipient of the 2004 Nobel Prize in physics, and author of A Beautiful Question: Finding Nature’s Deep DesignFrank Wilczek's Edge Bio Page

Humans: Doing More With Less

[7.16.19]

Imagine a superintelligent system with far more computational resources than us mere humans that’s trying to make inferences about what the humans who are surrounding it—which it thinks of as cute little pets—are trying to achieve so that it is then able to act in a way that is consistent with what those human beings might want. That system needs to be able to simulate what an agent with greater constraints on its cognitive resources should be doing, and it should be able to make inferences, like the fact that we’re not able to calculate the zeros of the Riemann zeta function or discover a cure for cancer. It doesn’t mean we’re not interested in those things; it’s just a consequence of the cognitive limitations that we have.

As a parent of two small children, a problem that I face all the time is trying to figure out what my kids want—kids who are operating in an entirely different mode of computation, and having to build a kind of internal model of how a toddler’s mind works such that it’s possible to unravel that and work out that there’s a particular motivation for the very strange pattern of actions that they’re taking.

Both from the perspective of understanding human cognition and from the perspective of being able to build AI systems that can understand human cognition, it’s desirable for us to have a better model of how rational agents should act if those rational agents have limited cognitive resources. That’s something I’ve been working on for the last few years. We have an approach to thinking about this that we call resource rationality. And this is closely related to similar ideas that are being proposed in the artificial intelligence literature. One of these ideas is the notion of bounded optimality, proposed by Stuart Russell.

TOM GRIFFITHS is the Henry R. Luce Professor of Information, Technology, Consciousness, and Culture at Princeton University. He is co-author (with Brian Christian) of Algorithms to Live By. Tom Griffiths's Edge Bio Page

A Separate Kind of Intelligence

[7.10.19]

It looks as if there’s a general relationship between the very fact of childhood and the fact of intelligence. That might be informative if one of the things that we’re trying to do is create artificial intelligences or understand artificial intelligences. In neuroscience, you see this pattern of development where you start out with this very plastic system with lots of local connection, and then you have a tipping point where that turns into a system that has fewer connections but much stronger, more long-distance connections. It isn’t just a continuous process of development. So, you start out with a system that’s very plastic but not very efficient, and that turns into a system that’s very efficient and not very plastic and flexible.

It’s interesting that that isn’t an architecture that’s typically been used in AI. But it’s an architecture that biology seems to use over and over again to implement intelligent systems. One of the questions you could ask is, how come? Why would you see this relationship? Why would you see this characteristic neural architecture, especially for highly intelligent species?

ALISON GOPNIK is a developmental psychologist at UC Berkeley. Her books include The Philosophical Baby and, most recently, The Gardener and the Carpenter: What the New Science of Child Development Tells Us About the Relationship Between Parents and Children. Alison Gopnik's Edge Bio Page

Pages

Subscribe to RSS - Special Events