My perspective is closest to George Dyson's. I liked his introducing himself as being interested in intelligence in the wild. I will copy George in that. That is what I’m interested in, too, but it’s with a perspective that makes it all in the wild. My interest in AI comes from a broader interest in a much more interesting question to which I have no answers (and can barely articulate the question): How do lots of simple things interacting emerge into something more complicated? Then how does that create the next system out of which that happens, and so on?

Consider the phenomenon, for instance, of chemicals organizing themselves into life, or single-cell organisms organizing themselves into multi-cellular organisms, or individual people organizing themselves into a society with language and things like that—I suspect that there’s more of that organization to happen. The AI that I’m interested in is a higher level of that and, like George, I suspect that not only will it happen, but it probably already is happening, and we’re going to have a lot of trouble perceiving it as it happens. We have trouble perceiving it because of this notion, which Ian McEwan so beautifully described, of the Golem being such a compelling idea that we get distracted by it, and we imagine it to be like that. That blinds us to being able to see it as it really is emerging. Not that I think such things are impossible, but I don’t think those are going to be the first to emerge.

There's a pattern in all of those emergences, which is that they start out as analog systems of interaction, and then somehow—chemicals have chains of circular pathways that metabolize stuff from the outside world and turn into circular pathways that are metabolizing—what always happens going up to the next level is those analog systems invent a digital system, like DNA, where they start to abstract out the information processing. So, they put the information processing in a separate system of its own. From then on, the interesting story becomes the story in the information processing. The complexity happens more in the information processing system. That certainly happens again with multi-cellular organisms. The information processing system is neurons, and they eventually go from just a bunch of cells to having this special information processing system, and that’s where the action is in the brains and behavior. It drags along and makes much more complicated bodies much more interesting once you have behavior.

W. DANIEL HILLIS is an inventor, entrepreneur, and computer scientist, Judge Widney Professor of Engineering and Medicine at USC, and author of The Pattern on the Stone: The Simple Ideas That Make Computers Work. W. Daniel Hillis's Edge Bio Page