steve_nadis's picture
Contributing Editor to Astronomy Magazine and a freelance writer
The Myth of the "Open Mind"

When I was 21, I began working for the Union of Concerned Scientists (UCS) in Cambridge Massachusetts. I was still an undergraduate at the time, planning on doing a brief research stint in energy policy before finishing college and heading to graduate school in physics. That "brief research stint" lasted about seven years, off and on, and I never did make it to graduate school. But the experience was instructive nevertheless.

When I started at UCS in the 1970s, nuclear power safety was a hot topic, and I squared off in many debates against nuclear proponents from utility companies, nuclear engineering departments, and so forth regarding reactor safety, radioactive wastes, and the viability of renewable energy alternatives. The next issue I took on for UCS was the nuclear arms race, which was equally polarized. (The neocons of that day weren't "neo" back then; they were just cons.) As with nuclear safety, there was essentially no common ground between the two sides. Each faction was invariably trying to do the other in, through oral rhetoric and tendentious prose, always looking for new material to buttress their case or undermine that of their opponents.

Even though the organization I worked for was called the Union of Concern Scientists, and even though many of the staff members there referred to me as a "scientist" (despite my lack of academic credentials), I knew that what I was doing was not science. (Nor were the many physics PhD's in arms control and energy policy doing science either.) In the back of my head, I always assumed that "real science" was different — that scientists are guided by facts rather than by ideological positions, personal rivalries, and whatnot.

In the decades since, I've learned that while this may be true in many instances, oftentimes it's not. When it comes to the biggest, most contentious issues in physics and cosmology — such as the validity of inflationary theory, string theory, or the multiverse/landscape scenario — the image of the objective truth seeker, standing above the fray, calmly sifting through the evidence without preconceptions or prejudice, may be less accurate than the adversarial model of our justice system. Both sides, to the extent there are sides on these matters, are constantly assembling their briefs, trying to convince themselves as well as the jury at large, while at the same time looking for flaws in the arguments of the opposing counsel.

This fractionalization may stem from scientific intuition, political or philosophical differences,  personal grudges, or pure academic competition. It's not surprising that this happens, nor is it necessarily a bad thing. In fact, it's my impression that this approach works pretty well in the law and in science too. It means that, on the big things at least, science will be vetted; it has to withstand scrutiny, pass muster.

But it's not a cold, passionless exercise either. At its heart, science is a human endeavor, carried out by people. When the questions are truly ambitious, it takes a great personal commitment to make any headway — a big investment in energy and in emotion as well. I know from having met with many of the lead researchers that the debates can get heated, sometimes uncomfortably so. More importantly, when you're engaged in an epic struggle like this — trying, for instance, to put together a theory of broad sweep — it may be difficult, if not impossible, to keep an "open mind" because you may be well beyond that stage, having long since cast your lot with a particular line of reasoning. And after making an investment over the course of many years, it's natural to want to protect it. That doesn't mean you can't change your mind — and I know of several cases where this has occurred — but, no matter what you do, it's never easy to shift from forward to reverse.

Although I haven't worked as a scientist in any of these areas, I have written about many of the "big questions" and know how hard it is to get all the facts lined up so that they fit together into something resembling an organic whole. Doing that, even as a mere scribe, involves periods of single-minded exertion, and during that process the issues can almost take on a life of their own, at least while you're actively thinking about them. Before long, of course, you've moved onto the next story and the excitement of the former recedes. As the urgency fades, you start wondering why you felt so strongly about the landscape or eternal inflation or whatever it was that had taken over your desk some months ago.

It's different, of course, for researchers who may stake out an entire career — or at least big chunks thereof — in a certain field.  You're obliged to keep abreast of all that's going on of note, which means one's interest is continually renewed. As new data comes in, you try to see how it fits in with the pieces of the puzzle you're already grappling with. Or if something significant emerges from the opposing camp, you may instinctively seek out the weak spots, trying to see how those guys messed up this time.

It's possible, of course, that a day may come when, try as you might, you can't find the weak spots in the other guy's story. After many attempts and an equal number of setbacks, you may ultimately have to accede to the view of an intellectual, if not personal, rival. Not that you want to but rather because you can't see any way around it. On the one hand, you might chalk it up as a defeat, something that will hopefully build character down the road. But in the grand scheme of things, it's more of a victory — a sign that sometimes our adversarial system of science actually works.