Consultant; Adaptive Optics and Adjunct Professor of Anthropology, University of Utah; Coauthor (with Henry Harpending), The 10,000 Year Explosion

Our most reliable engine of change has been increased understanding of the physical world. First it was Galilean dynamics and Newtonian gravity, then electromagnetism, later quantum mechanics and relativity. In each case, new observations revealed new physics, physics that went beyond the standard models—physics that led to new technologies and to new ways of looking at the universe. Often those advances were the result of new measurement techniques. The Greeks never found artificial ways of extending their senses, which hobbled their protoscience. But ever since Tycho Brahe, a man with a nose for instrumentation, better measurements have played a key role in Western science.

We can expect significantly improved observations in many areas over the next decade. Some of that is due to sophisticated, expensive, and downright awesome new machines. The Large Hadron Collider should begin producing data next year, and maybe even information. We can scan the heavens for the results of natural experiments that you wouldn't want to try in your backward—events that shatter suns and devour galaxies—and we're getting better at that. That means devices like the 30-meter telescope under development by a Caltech-led consortium, or the 100-meter OWL (Overwhelmingly Large Telescope) under consideration by the European Southern Observatory. Those telescopes will actively correct for the atmospheric fluctuations which make stars twinkle—but that's almost mundane, considering that we have a neutrino telescope at the bottom of the Mediterranean and another buried deep in the Antarctic ice. We have the world's first real gravitational telescope (LIGO, the Laser Interferometer Gravitational-Wave Observatory) running now, and planned improvements should increase its sensitivity enough to study cosmic fender-benders in the neighborhood, as (for example) when two black holes collide. An underground telescope, of course….

There's no iron rule ensuring that revolutionary discoveries must cost an arm and a leg: ingenious experimentalists are testing quantum mechanics and gravity in table-top experiments, as well. They'll find surprises. When you think about it, even historians and archaeologists have a chance of shaking gold out of the physics-tree: we know the exact date of the Crab Nebula supernova from old Chinese records, and with a little luck we'll find some cuneiform tablets that give us some other astrophysical clue, as well as the real story about the battle of Kadesh…

We have a lot of all-too-theoretical physics underway, but there's a widespread suspicion that the key shortage is data, not mathematics. The universe may not be stranger than we can imagine but it's entirely possible that it's stranger than we have imagined thus far. We have string theory, but what Bikini test has it brought us? Experiments led the way in the past and they will lead the way again.

We will probably discover new physics in the next generation, and there's a good chance that the world will, as a consequence, become unimaginably different. For better or worse.