A rejoinder which consigns Joy to the realms of science fiction — which of us would not applaud? Freitas' article is 30 pages long and contains a lot of complex sums. But the point of these computations is not to tell us whether or not atomic nanorobots are feasible. Instead, they tell us how to read the tell-tale signs of rampant robotic procreation and what can be done to stop it. Freitas tells us how we can use global warming to measure the spread of nanorobots. He also calculates the energy consumption of all the insects and all the birds on the Earth. His paper has already been presented to the U.S. authorities responsible for President Clinton's nanotechnology initiative. It is an advisory paper intended for politicians.

What is extraordinary about this scientific debate is that both Joy and Freitas are talking about a technology which is so far in the future that even the word infancy would be premature. Yet both are convinced — Joy with grave concern and Freitas full of hope — that it will dominate the next great industrial revolution.

Freitas, a man not even 40, was commissioned by NASA to conduct an extensive study of self-replicating systems for long-distance space travel. He has just published the first volume of his "Nanomedicine," another science which doesn't yet exist but is nevertheless described in great detail. He is a quiet and unassuming scientist, whose patrons include the 1996 Nobel laureate in chemistry, Richard E. Smalley. It was Smalley's own paper on "Nanotechnology and the Next 50 Years" which helped establish nanotechnology as a serious new branch of science. Ray Kurzweil and Ralph Merkle are also among those who find it difficult to dismiss Freitas as a dreamer. "We've got to learn," Smalley said in his paper, "how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells." To which Freitas responds, "This is something we will learn."

Beginning | Page 1 2 3 4 5 Next