Home|Third Culture|Digerati|Reality Club

Mirror neurons can also enable you to imitate the movements of others thereby setting the stage for the complex Lamarckian or cultural inheritance that characterizes our species and liberates us from the constraints of a purely gene based evolution. Moreover, as Rizzolati has noted, these neurons may also enable you to mime — and possibly understand — the lip and tongue movements of others which, in turn, could provide the opportunity for language to evolve. (This is why, when you stick your tongue out at a new born baby it will reciprocate! How ironic and poignant that this little gesture encapsulates a half a million years of primate brain evolution.) Once you have these two abilities in place the ability to read someone's intentions and the ability to mime their vocalizations then you have set in motion the evolution of language. You need no longer speak of a unique language organ and the problem doesn't seem quite so mysterious any more.

(Another important piece of the puzzle is Rizzolatti's observation that the ventral premotor area may be a homologue of the "Broca's area" — a brain center associated with the expressive and syntactic aspects of language in humans).

These arguments do not in any way negate the idea that there are specialized brain areas for language in humans. We are dealing, here, with the question of how such areas may have evolved, not whether they exist or not.

Mirror neurons were discovered in monkeys but how do we know they exist in the human brain? To find out we studied patients with a strange disorder called anosognosia. Most patients with a right hemisphere stroke have complete paralysis of the left side of their body and will complain about it, as expected. But about 5% of them will vehemently deny their paralysis even though they are mentally otherwise lucid and intelligent. This is the so called "denial" syndrome or anosognosia. To our amazement, we found that some of these patients not only denied their own paralysis, but also denied the paralysis of another patient whose inability to move his arm was clearly visible to them and to others. Denying ones one paralysis is odd enough but why would a patient deny another patient's paralysis? We suggest that this bizarre observation is best understood in terms of damage to Rizzolatti's mirror neurons. It's as if anytime you want to make a judgement about someone else's movements you have to run a VR (virtual reality) simulation of the corresponding movements in your own brain and without mirror neurons you cannot do this .

The second piece of evidence comes from studying brain waves (EEG) in humans. When people move their hands a brain wave called the MU wave gets blocked and disappears completely. Eric Altschuller, Jamie Pineda, and I suggested at the Society for Neurosciences in 1998 that this suppression was caused by Rizzolati's mirror neuron system. Consistent with this theory we found that such a suppression also occurs when a person watches someone else moving his hand but not if he watches a similar movement by an inanimate object. (We predict that children with autism should show suppression if they move their own hands but not if they watch some one else. Our lab now has preliminary hints from one highly functioning autistic child that this might be true (Social Neuroscience Abstracts 2000).


Previous | Page 1 2 3 4 5 6 Next