| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

next >



Science Writer; Founding chairman of the International Centre for Life; Author, Francis Crick: Discoverer of the Genetic Code

Collective intelligence

Brilliant people, be they anthropologists, psychologists or economists, assume that brilliance is the key to human achievement. They vote for the cleverest people to run governments, they ask the cleverest experts to devise plans for the economy, they credit the cleverest scientists with discoveries, and they speculate on how human intelligence evolved in the first place.

They are all barking up the wrong tree. The key to human achievement is not individual intelligence at all. The reason human beings dominate the planet is not because they have big brains: Neanderthals had big brains but were just another kind of predatory ape. Evolving a 1200-cc brain and a lot of fancy software like language was necessary but not sufficient for civilization. The reason some economies work better than others is certainly not because they have cleverer people in charge, and the reason some places make great discoveries is not because they have smarter people.

Human achievement is entirely a networking phenomenon. It is by putting brains together through the division of labor — through trade and specialisation — that human society stumbled upon a way to raise the living standards, carrying capacity, technological virtuosity and knowledge base of the species. We can see this in all sorts of phenomena: the correlation between technology and connected population size in Pacific islands; the collapse of technology in people who became isolated, like native Tasmanians; the success of trading city states in Greece, Italy, Holland and south-east Asia; the creative consequences of trade.

Human achievement is based on collective intelligence — the nodes in the human neural network are people themselves. By each doing one thing and getting good at it, then sharing and combining the results through exchange, people become capable of doing things they do not even understand. As the economist Leonard Read observed in his essay "I, Pencil' (which I'd like everybody to read), no single person knows how to make even a pencil — the knowledge is distributed in society among many thousands of graphite miners, lumberjacks, designers and factory workers.

That's why, as Friedrich Hayek observed, central planning never worked: the cleverest person is no match for the collective brain at working out how to distribute consumer goods. The idea of bottom-up collective intelligence, which Adam Smith understood and Charles Darwin echoed, and which Hayek expounded in his remarkable essay "The use of knowledge in society", is one idea I wish everybody had in their cognitive toolkit.

Psychologist; Director of the Center for Adaptive Behavior and Cognition at the Max Planck Institute for Human Development in Berlin; Author, Gut Feelings

Risk Literacy

Literacy — the ability to read and write — is the precondition for an informed citizenship in a participatory democracy. But knowing how to read and write is no longer enough. The breakneck speed of technological innovation has made risk literacy as indispensable in the 21st century as reading and writing were in the 20th century. Risk literacy is the ability to deal with uncertainties in an informed way.

Without it, people jeopardize their health and money and can be manipulated into experiencing unwarranted, even damaging hopes and fears. Yet when considering how to deal with modern threats, policy makers rarely ever invoke the concept of risk literacy in the general public. To reduce the chances of another financial crisis, proposals called for stricter laws, smaller banks, reduced bonuses, lower leverage ratios, less short-termism, and other measures.

But one crucial idea was missing: helping the public better understand financial risk. For instance, many of the "NINJAs" (no income, no job, no assets) who lost everything but the shirts on their backs in the subprime crisis didn't realize that their mortgages were variable, not fixed-rate. Another serious problem that risk literacy can help solve are the exploding costs of health care.. Tax hikes or rationed care are often presented as the only viable alternatives. Yet by promoting health literacy in patients, better care can be had for less money.

For instance, many parents are unaware that one million U.S. children have unnecessary CT scans annually and that a full body scan can deliver one thousand times the radiation dose of a mammogram, resulting in an estimated 29,000 cancers per year.

I believe that the answer to modern crises is not simply more laws, more bureaucracy, or more money, but, first and foremost, more citizens who are risk literate. This can be achieved by cultivating statistical thinking.

Simply stated, statistical thinking is the ability to understand and critically evaluate uncertainties and risks. Yet 76 percent of U.S. adults and 54 percent of Germans do not know how to express a 1 in 1,000 chance as a percentage (0.1%). Schools spend most of their time teaching children the mathematics of certainty — geometry, trigonometry — and spend little if any time on the mathematics of uncertainty. If taught at all, it is mostly in the form of coin and dice problems that tend to bore young students to death. But statistical thinking could be taught as the art of real-world problem solving, i.e. the risks of drinking, AIDS, pregnancy, horseback riding, and other dangerous things. Out of all mathematical disciplines, statistical thinking connects most directly to a teenager's world.

Even at the university level, law and medical students are rarely taught statistical thinking — even though they are pursuing professions whose very nature it is to deal with matters of uncertainty. U.S. judges and lawyers have been confused by DNA statistics and fallen prey to the prosecutor's fallacy; their British colleagues drew incorrect conclusions about the probability of recurring sudden infant death. Many doctors worldwide misunderstand the likelihood that a patient has cancer after a positive screening test and can't critically evaluate new evidence presented in medical journals. Experts without risk literacy skills are part of the problem rather than the solution.

Unlike basic literacy, risk literacy requires emotional re-wiring: rejecting comforting paternalism and illusions of certainty, and learning to take responsibility and to live with uncertainty. Daring to know. But there is still a long way to go. Studies indicate that most patients want to believe in their doctors' omniscience and don't dare to ask for backing evidence, yet nevertheless feel well-informed after consultations. Similarly, even after the banking crisis, many customers still blindly trust their financial advisors, jeopardizing their fortune in a consultation that takes less time than they'd spend watching a football game. Many people cling to the belief that others can predict the future and pay fortune sellers for illusory certainty. Every fall, renowned financial institutions forecast next year's Dow and dollar exchange rate, even though their track record is hardly better than chance. We pay $200 billion yearly to a forecasting industry that delivers mostly erroneous future predictions.

Educators and politicians alike should realize that risk literacy is a vital topic for the 21st century. Rather than being nudged into doing what experts believe is right, people should be encouraged and equipped to make informed decisions for themselves. Risk literacy should be taught beginning in elementary school. Let's dare to know — risks and responsibilities are chances to be taken, not avoided.

Executive Director, H-STAR Institute, Stanford University; Author, The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern

Base rate

The recent controversy about the potential dangers to health of the back-scatter radiation devices being introduced at the nation's airports and the intrusive pat-downs offered as the only alternative by the TSA might well have been avoided had citizens been aware of, and understood, the probabilistic notion of base rate.

Whenever a statistician wants to predict the likelihood of some event based on the available evidence, there are two main sources of information that have to be taken into account:

1. The evidence itself, for which a reliability figure has to be calculated;

2. The likelihood of the event calculated purely in terms of relative incidence.

The second figure here is the base rate. Since it is just a number, obtained by the seemingly dull process of counting, it frequently gets overlooked when there is new information, particularly if that new information is obtained by "clever experts" using expensive equipment. In cases where the event is dramatic and scary, like a terrorist attack on an airplane, failure to take account of the base rate can result in wasting massive amounts of effort on money trying to prevent something that is very unlikely.

For example, suppose that you undergo a medical test for a relatively rare cancer. The cancer has an incidence of 1% among the general population. (That is the base rate.) Extensive trials have shown that the reliability of the test is 79%. More precisely, although the test does not fail to detect the cancer when it is present, it gives a positive result in 21% of the cases where no cancer is present — what is known as a "false positive." When you are tested, the test produces a positive diagnosis. The question is: What is the probability that you have the cancer?

If you are like most people, you will assume that if the test has a reliability rate of nearly 80%, and you test positive, then the likelihood that you do indeed have the cancer is about 80% (i.e., the probability is approximately 0.8). Are you right?

The answer is no. You have focused on the test and its reliability, and overlooked the base rate, Given the scenario just described, the likelihood that you have the cancer is a mere 4.6% (i.e., the probability is 0.046). That's right, there is a less than 5% chance that you have the cancer. Still a worrying possibility, of course. But hardly the scary 80% you thought at first.

In the case of the back-scatter radiation devices at the airports, the base rate for dying in a terrorist attack is lower than many other things we do every day without hesitation. In fact, according to some reports, it is about the same as the likelihood of getting cancer as a result of going through the device.

Professor of Computer Science, UC Berkeley, School of Information; Author, Search User Interfaces


Findex (n): The degree to which a desired piece of information can be found online.

We are the first humans in history to be able to form just about any question in our minds and know that very likely the answer can be before us in minutes, if not seconds. This omnipresent information abundance is a cognitive toolkit entirely in itself. The actuality of this continues to astonish me.

Although some have written about information overload, data smog, and the like, my view has always been the more information online, the better, so long as good search tools are available. Sometimes this information is found by directed search using a web search engine, sometimes by serendipty by following links, and sometimes by asking hundreds of people in our social network or hundreds of thousands of people on a question answering website such as Answers.com, Quora, or Yahoo Answers.

I do not actually know of a real findability index, but tools in the field of information retrieval could be applied to develop one. One of the unsolved problems in the field is how to help the searcher to determine if the information simply is not available.

Eugene Higgins Professor, Department of Psychology, Princeton University

An Assertion Is Often An Empirical Question, Settled By Collecting Evidence

The most important scientific concept is that an assertion is often an empirical question, settled by collecting evidence. The plural of anecdote is not data, and the plural of opinion is not facts. Quality, peer-reviewed scientific evidence accumulates into knowledge. People's stories are stories, and fiction keeps us going. But science should settle policy.

Independent Researcher; Author, Dinosaurs of the Air

Scientists Should Be Scientists

The archenemy of scientific thinking is conversation. As in typical human conversational discourse, much of which is BS. Personally I have become rather fed up with talking to people. Seriously, it is something a problem. Fact is, folks are prone to getting pet opinions into their heads and then actually thinking they are true to the point of obstinacy, even when they have little or no idea of what they are talking about in the first place. We all do it. It is part of how the sloppy mind generating piece of meat between our ears we call the human brain is prone to work. Humans may be the most rational beings on the planet these days — but that's not saying much considering that the next most rational are chimpanzees.

Take creationism. Along with the global climate issue and parental fear of vaccination, the fact that a big chunk of the American body politic deny evolutionary and paleontological science and actually think a god created humans in near historical times is causing scientists to wonder just what is wrong with the thinking of so many people — mass creationism has been used as a classic example of mass anti-scientific thinking by others responding to this question. But I am not going to focus so much on the usual problem of why creationism is popular, but more on what many who promote science over creationism think they know about those who deny the reality of Darwin's theory.

A few years back an anti-creationist documentary came out, A Flock of Dodos. Nicely done in many regards, it scored some points against the anti-evolution crowd, and when it came to trying to explain why many Americans are repelled by evolution was way off base. The reason it was so wrong was because the creator of the film, Randy Olson, went to the wrong people to find out where the problem lies. A (seeming) highlight of the picture featured a bunch of poker playing Harvard evolutionary scientists gathered around a table to converse and opine on why the yahoos don't like the results of their research. This was a very bad mistake for the simple reason that evolutionary scientists are truly knowledgeable only about their area of expertise, evolutionary science.

If you really want to know why regular folk think the way they do then you go to the experts on that subject, sociologists. Because A Flock of Dodos never does that, its viewers never find out why creationism thrives in the age of science, and what needs to be done to tame the pseudoscientific beast.

This is not an idle problem. In the last decade big strides have been made in understanding the psychosociology of popular creationism — basically, it flourishes only in seriously dysfunctional societies, and the one sure why to suppress the errant belief is to run countries well enough that the religion creationism depends upon withers to minority status, dragging creationism down with it.

In other words better societies result in mass acceptance of evolution. Yet getting the word out is proving disturbingly difficult. So the chatty pet theories abut why creationism is a problem and what to do about it continue to dominant the national conversation, and pro-creationist opinion remains rock steady (although those who favor evolution without a God is rising along with the general increase of nonbelievers).

It's not just evolution. A classic example of conversational thinking by a scientist causing trouble was Linus Pauling's obsession with vitamin C. Many ordinary citizens are skeptical of scientists in general. When researchers offer up poorly sustained opinions on matters outside their firm knowledge base it does not help the general situation.

So what can be done? In principle it is simple enough. Scientists should be scientists. We should know better than to cough up committed but dubious opinion on subjects outside our expertise. This does not mean a given scientist has to limit their observations solely to their official field of research. Say a scientist is also a self-taught authority on baseball. By all means ardently discuss that subject the way Stephen Gould used to.

I have long had an intense interest in the myths of World War II, and can offer an excellent discourse on why the atom bombing of Hiroshima and Nagasaki had pretty much nothing to do with ending the war in case you are interested (it was the Soviet attack on Japan that forced Hirohito to surrender to save his war criminal's neck and keep Japan from being split into occupation zones like Germany and Korea). But if a scientist finds him or herself being asked about something they do not know a lot about either decline to opine, or qualify the observations by stating that the opinion is tentative and nonexpert.

In practical terms the problem is, of course, that scientists are human beings like everyone else. So I am not holding my breath waiting for us to achieve a level of factual discourse that will spread enlightenment to the masses. It's too bad but very human. I have tried to cut down on throwing out idle commentary without qualifying its questionable reality, while being ardent about my statements only when I know I can back them up. Me thinks I am fairly successful in this endeavor, and it does seem to keep me out of trouble.



French for handyman or do-it-yourselfer, this word has migrated into art and philosophy recently and savants would do well tossing it into their cognitive toolbox. A Bricoleur is a talented tinkerer, the sort who can build anything out of anything: whack off a left-over drain pipe, fasten a loop of tin roofing, dab some paint, and presto a mailbox. If one peers closely all the parts are still there, still a piece of roofing, a piece of pipe, but now the assembly exceeds the sum of the parts and is useful in a different way. In letters a Bricoleur is viewed as an intellectual MacGyver tacking bits of his heritage to sub-cultures about him for a new meaning-producing pastiche.

A Bricoleur is not a new thing, but it has become a new way of understanding old things: Epistemology, the Counter-Enlightenment, and the endless parade of "isms" of the 19th and 20th Centuries: Marxism, Modernism, Socialism, Surrealism, Abstract Expressionism, Minimalism — the list is endless, and often exclusive, each insisting that the other cannot be. The exegesis of these grand theories by deconstruction — substituting trace for presence — and similar activities during the past century shows these worldviews not as discoveries, instead but assemblies, by creative Bricoleurs who had been working in the background, stapling together meaning producing scenarios from textual bric-a-brac lying about.

Presently, encompassing worldviews in philosophy have been shelved, and master art movements of style and conclusion folded along side it, no more "isms" are being run up the flagpole, because no one is saluting. Pluralism and modest descriptions of the world have become the activity of fine arts and letters, personalization and private worlds the Zeitgeist. The common prediction was that the loss of grand narrative would result in a descent into end-of-history purposelessness, instead everywhere the Bricoleurs are busy manufacturing meaning-eliciting metaphor.

Motion Graphics, Bio-art, Information Art, Net Art, Systems Art, Glitch Art, Hacktivism, Robotic Art, Relational Esthetics and others, all current art movements tossed up by contemporary Bricoleurs in an endless salad. Revisit 19th Century Hudson River landscape painting? Why not. Neo-Rodin, Post-New Media? A Mormon dabbling with the Frankfurt School. Next month. With the quest for universal validity suspended there is a pronounced freedom to assemble lives filled with meaning from the nearby and at-hand, one just needs a Bricoleur.

Practicing Neurologist, New York City; Playwright, Off-Off Broadway Productions, Charter Members; The Gold Ring

Bias Is The Nose For The Story

The exponential explosion of information and our ability to access it make our ability to validate its truthfulness not only more important but also more difficult. Information has importance in proportion to its relevance and meaning. Its ultimate value is how we use it to make decisions and put it in a framework of knowledge

Our perceptions are crucial in appreciating truth. However, we do not apprehend objective reality. Perception is based on recognition and interpretation of sensory stimuli derived from patterns of electrical impulses. From this data, the brain creates analogues and models that simulate tangible, concrete objects in the real world. Experience, though, colors and influences all of our perceptions by anticipating and predicting everything we encounter and meet. It is the reason Goethe advised that "one must ask children and birds how cherries and strawberries taste." This preferential set of intuitions, feelings, and ideas, less poetically characterized by the term bias, poses a challenge to the ability to weigh evidence accurately to arrive at truth. Bias is the non-dispassionate thumb which experience puts on the scale.

Our brains evolved having to make the right bet with limited information. Fortune, it has been said, favors the prepared mind. Bias in the form of expectation, inclination and anticipatory hunches helped load the dice in our favor and for that reason is hardwired into our thinking.

Bias is an intuition, sensitivity, receptiveness which acts as a lens or filter on all our perceptions. "If the doors of perception were cleansed," Blake said, "everything would appear to man as it is, infinite." But without our biases to focus our attention, we would be lost in that endless and limitless expanse. We have at our disposal an immeasurable assortment of biases and their combination in each of us is as unique as a fingerprint. These biases mediate between our intellect and emotions to help congeal perception into opinion, judgment, category, metaphor, analogy, theory, and ideology which frame how we see the world.

Bias is tentative. Bias adjusts as the facts change. Bias is a provisional hypothesis. Bias is normal.

Although bias is normal in the sense that it is a product of how we select and perceive information, its influence on our thinking cannot be ignored. Medical science has long been aware of the inherent bias, which occurs in collecting and analyzing clinical data. The double blind, randomized controlled study, the gold standard of clinical design, was developed in an attempt to nullify its influence.

We live in the world, however, not in a laboratory and bias cannot be eliminated. Bias critically utilized sharpens the collection of data by knowing when to look, where to look, and how to look. It is fundamental to both inductive and deductive reasoning. Darwin didn't collect his data to formulate the theory of evolution randomly or disinterestedly. Bias is the nose for the story.

Truth needs continually to be validated against all evidence, which challenges it fairly and honestly. Science with its formal methodology of experimentation and reproducibility of its findings is available to anyone who plays by its rules. No ideology, religion, culture or civilization is awarded special privileges or rights. The truth, which survives this ordeal, has another burden to bear. Like the words in a multi-dimensional crossword puzzle, it has to fit together with all the other pieces already in place. The better and more elaborate the fit, the more certain the truth. Science permits no exceptions. It is inexorably revisionary, learning from its mistakes, erasing and rewriting, even their most sacred texts, until the puzzle is complete.

Professor of English at the University at Albany; Author, The Spy Who Loved Us

Open Systems

This year, Edge is asking us to identify a scientific concept that "would improve everybody's cognitive toolkit." Not clever enough to invent a concept of my own, I am voting for a winning candidate. It might be called the Swiss Army knife of scientific concepts, a term containing a remarkable number of useful tools for exploring cognitive conundrums. I am thinking of open systems, an idea that passes through thermodynamics and physics, before heading into anthropology, linguistics, history, philosophy, and sociology, until arriving, finally, into the world of computers, where it branches into other ideas such as open source and open standards.

Open standards allow knowledgeable outsiders access to the design of computer systems, to improve, interact with, or otherwise extend them. These standards are public, transparent, widely accessible, and royalty-free for developers and users. Open standards have driven innovation on the Web and allowed it to flourish as both a creative and commercial space.

Unfortunately, the ideal of an open web is not embraced by companies that prefer walled gardens, silos, proprietary systems, aps, tiered levels of access, and other metered methods for turning citizens into consumers. Their happy-face web contains tracking systems useful for making money, but these systems are also appreciated by the police states of the world, for they, too, have a vested interest in surveillance and closed systems.

Now that the Web has frothed through twenty years of chaotic inventiveness, we have to push back against the forces that would close it down. A similar push should be applied to other systems veering toward closure. "Citoyens, citoyennes, arm yourselves with the concept of openness."

Science Editor, The Times; Author, 50 Genetics Ideas You Really Need to Know

Science's Methods Aren't Just For Science

Most people tend to think of science in one of two ways. It is a body of knowledge and understanding about the world: gravity, photosynthesis and evolution. Or it is the technology that has emerged from the fruits of that knowledge: vaccines, computers and cars. Science is both of these things, yet as Carl Sagan so memorably explained in The Demon-Haunted World, it is something else besides. It is a way of thinking, the best approach yet devised (if still an imperfect one) to discovering progressively better approximations of how things really are.

Science is provisional, always open to revision in light of new evidence. It is anti-authoritarian: anybody can contribute, and anybody can be wrong. It seeks actively to test its propositions. And it is comfortable with uncertainty. These qualities give the scientific method unparalleled strength as a way of finding things out. Its power, however, is too often confined to an intellectual ghetto: those disciplines that have historically been considered "scientific".

Science as a method has great things to contribute to all sorts of pursuits beyond the laboratory. Yet it remains missing in action from far too much of public life. Politicians and civil servants too seldom appreciate how tools drawn from both the natural and social sciences can be used to design more effective policies, and even to win votes.
In education and criminal justice, for example, interventions are regularly undertaken without being subjected to proper evaluation. Both fields can be perfectly amenable to one of science's most potent techniques — the randomised controlled trial — yet these are seldom required before new initiatives are put into place. Pilots are often derisory in nature, failing even to collect useful evidence that could be used to evaluate a policy's success.

Sheila Bird of the Medical Research Council, for instance, has criticised the UK's introduction of a new community sentence called the Drug Treatment and Testing Order, following pilots designed so poorly as to be worthless. They included too few subjects; they were not randomised; they did not properly compare the orders with alternatives; and judges were not even asked to record how they would otherwise have sentenced offenders.

The culture of public service could also learn from the self-critical culture of science. As Jonathan Shepherd, of the University of Cardiff, has pointed out, policing, social care and education lack the cadre of practitioner-academics that has served medicine so well. There are those who do, and there are those who research: too rarely are they the same people. Police officers, teachers and social workers are simply not encouraged to examine their own methods in the same way as doctors, engineers and bench scientists. How many police stations run the equivalent of a journal club?

The scientific method and the approach to critical thinking it promotes are too useful to be kept back for "science" alone. If it can help us to understand the first microseconds of creation and the structure of the ribosome, it can surely improve understanding of how best to tackle the pressing social questions of our time.

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

next >