| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

next >



Back to Index

Artist, New York City; Mary Boone Gallery


When scientists realize that they have failed to produce technological advances that improve or assure the most important of our brain’s abilities, empathy, it will start to allow us to accept the actual limitations of our bodies and enable us to accept our physicality.

That the body is our biggest single problem is no doubt. What we have to do to keep it fed, sheltered, clothed and reproducing has shaped everything we have invented, built and killed for.

We are blessed with a mind of extraordinary powers and we are cursed because that mind is housed in a less than extraordinary container. This has been a source of great discomfort to us all along. We have continually invented more powerful devices to enhance our sensory perceptions. We now have eyesight that can see objects billions of light years away. We can see color spectrums way beyond our natural eye’s ability to do so. We can see within as well as out. We can hear almost as far as we can see and we have learned how to throw our voices such great distances that people around the world can hear us. We can fly and we can move about underwater as if we lived there. We have tended to preference transportation and communication over our other sense experiences: touch, smell, and taste. (It probably bears looking into this discrepancy as to why this should be.)

And, of course, there is mortality. Ah, Death, you son of a bitch. You and your brothers, Disease and Aging, have tormented us since we became aware of Time. And we have worked like crazy trying to develop ways of extending Time so as to hold off the inevitable. We have even broken down Time into such miniscule units as to fool ourselves into believing it is endless.

Most scientific advancements focus on rapid repair of malfunctioning parts, most currently using robotic replacements or ever-more precise chemical interventions, or ways of expanding the sensory capabilities through technologies implanted in the brain.

One could say that these "game changers" are technologies for body enhancement. Lower forms of this techno-wish are what fuel the beauty industry.

Leave it to the Scientists, so caught up in their research, to miss the big picture. Either they take for granted that the reasons that motivate the questioning and the technologies they develop will not only contain its original impetus but will make it explicit. Or they believe that technological development will transcend its own impetus and render those expressed needs insignificant.

Will new systems for global education address the content of its courses? If the body can be made better by robotics will it enhance our ability to experience empathy?

The way we feel about the body does not get acknowledged in the way we think about the body. We fetish-ize the idea of systemic and technological developments geared towards dealing with the problems of fixing our bodies but have only managed to obscure the emotional and psychological underpinnings.

Artist, New York City; Saatchi Gallery


i have thought ever more

i have drawn birds for eternity

i have made poems

i have made and thrown a snow ball

i have burnt myself

my answer is still just


Neurologist & Cognitive Neuroscientist, The New School; Coauthor, Children's Learning and Attention Problems


Innovation in science and technology will continue to bring much change. But since it is the brain that experiences change, only changing the brain itself can possibly change everything. Changing the human brain is not new, when it is a matter of correcting psychopathology. But whether the usual agents, psychoactive drugs, psychosurgery, electroshock, even what we eat, drink and smoke, can change a brain that is functioning normally (other than for the worse), is not known. However, the novel method of deep brain stimulation (DBS), by which electrodes are inserted into the brain to stimulate precisely specified locations electrically, is already used to correct certain brain disorders (Parkinsonism, Obsessive Compulsive Disorder). Not only are the targeted symptoms often relieved; there have been profound changes in personality, although the prior personality was not abnormal. A patient of lifelong somber disposition may not only be relieved of obsessions, but also shift to a cheerful mood, the instant the current is switched on (and revert to his prior subdued self, the instant it is switched off). The half empty glass temporarily becomes the glass that is half full. The brain seems not entirely to respect our conventional sharp distinction between what is normal and what is not.

The stimulation's immediate effect is shocking. We assume that our gratifyingly complex minds and brains are incrementally shaped by innumerable dynamic and environmental factors. And yet, identical twins adopted apart into sharply contrasting social and economic environments have shown impressive similarities in mood and sense of wellbeing. Genetically determined types of brain organization appear to set the emotional tone; experience modulates it in a positive or negative direction. Stimulating or disrupting neural transmission along a specific neural pathway or reverberating loop may reset the emotional tone, entirely sidestepping the complexities of early experience, stress, misfortune, and let personality float free. The procedure releases a previously unsuspected potential. The human brain is famously plastic. Adjusting key circuitry presumably has wide repercussions throughout the brain's neural network, which settles into a different state. We have yet thoroughly to digest the philosophical implications, but a more unequivocal validation of psychoneural identity theory (the identity of the brain and the mind, different aspects of the same thing) can hardly be imagined.

Certainly, deep brain stimulation is not currently used to render sane people more thoughtful, agreeable, gentle or considerate. Potential adverse neurosurgical side effects aside, ethical considerations prohibit using deep brain stimulation to enhance a brain considered to be normal. But history teaches two lessons: Any technology will tend to become more precise, effective and safer over time, and, anything that can be done, ultimately will be done, philosophical and ethical considerations notwithstanding.

The example of cosmetic plastic surgery is instructive. Reconstructive in its origins, it is increasingly used for cosmetic purposes. I predict the same shift for deep brain stimulation. Cosmetic surgery is used to render people more appealing. In human affairs, appearance is critical. For our hypersocial species, personal appeal opens doors that remain shut to mere competence and intellect. Undoubtedly, cosmetic surgery enhances quality of life, so how can it be denied to anyone? And yet, it is by its very nature deceptive; the operated face is not really the person's face, the operated body not really their body. However, experience teaches that these reservations as to authenticity remain theoretical. The cosmetically adjusted nose, breast, thighs or skin tones become the person's new reality, without significant social backlash. Even face transplants are now feasible. We read so much into a face—but what if it is not the person's "real" face? Does anyone care, or even remember the previous appearance? So it will be with neurocosmetics.

And yet, is it not more deeply disturbing to tinker with the brain itself, than to adjust one's body to one's liking? It is. However, the mind-body distinction has become somewhat blurred of late. Evidence accumulates as to the embodiment of cognition and emotion, and at the least, there is influential feedback between the two domains. Considerations that will be raised by cosmetic deep brain stimulation are already in play, in a minor key, with cosmetic surgery.

Deep brain stimulation seems not to enhance intellect, but intellect is no high road to success. "Social intelligence" is of prime importance, and it is a byproduct of personality. In some form, deep brain stimulation will be used to modify personality so as to optimize professional and social opportunity, within my lifetime. Ethicists will deplore this, and so they should. But it will happen nonetheless, and it will change how humans experience the world and how they relate to each other in as yet unimagined ways.

Consider an arms race in affability, a competition based not on concealing real feelings, but on feelings engineered to be real. Consider a society of homogenized good will, making regular visits to the DBS provider who advertises superior electrode placement? Switching a personality on and then off, when it becomes boring? Alternating personalities: Dr. Accumbens and Mr. Insula (friendly and disgusted respectively)? Tracking fashion trends in personality? Coordinating personalities for special events? Demanding personalities such as emerge on drugs (e.g. cocaine), or in psychopathologies (e.g. hypomania)? Regardless, the beneficiaries of deep brain stimulation will experience life quite differently. Employment opportunities for yet more ethicists and more philosophers!

We take ourselves to be durable minds in stable bodies. But this reassuring self-concept will turn out to be yet another of our so human egocentric delusions. Do we, strictly speaking, own stable identities? When it sinks in that the continuity of our experience of the world and our self is at the whim of an electrical current, then our fantasies of permanence will have yielded to the reality of our fragile and ephemeral identities.

Mihaly Csikszentmihalyi
Psychologist; Director, Quality of Life Research Center, Claremont Graduate University; Author, Flow


The idea that will change the game of knowledge is the realization that it is more important to understand events, objects, and processes in their relationship with each other than in their singular structure.

Western science has achieved wonders with its analytic focus, but it is now time to take synthesis seriously. We shall realize that science cannot be value-free after all. The Doomsday clock ticking on the cover of the Bulletin of Atomic Scientists ever closer to midnight is just one reminder that knowledge ignorant of consequences is foolishness.

Chemistry that shrugs at pollution is foolishness, Economics that discounts politics and sociology is just as ignorant as are politics and sociology that discount economics.

Unfortunately, it does not seem to be enough to protect the neutral objectivity of each separate science, in the hope that the knowledge generated by each will be integrated later at some higher level and used wisely. The synthetic principle will have to become a part of the fundamental axioms of each science. How shall this breakthrough occur? Current systems theories are necessary but not sufficient, as they tend not to take values into account. Perhaps after this realization sets in, we shall have to re-write science from the ground up.

Dimitar Sasselov
Astrophysicist, Harvard


To an economist "everything" is the world global marketplace. To a baseball fan the World Series is the competition of teams from two countries. To me, a student of astronomy, "everything" is the universe, and really all of it.

What could we possibly do to change that "everything"? People like to say that a scientific idea changed the world when it is as big as Copernicus suggesting that the Sun, not Earth, is at the center. People file the invention of the Internet as a development that changed the world. The list is long.

But which world did these ideas change? Well, yes - they are all about us, Homo sapiens, a recently evolved branch on the "tree of life" with roots in a biochemistry that somehow, 4 billion years ago, took hold on planet Earth. And yes, Homo sapiens has created new amazing things: airplanes, antibiotics, phones, the Internet, but none of these will change the orbits of the stars.

And so it was until now. There is a game-changing scientific development that transcends all in human history. It is already underway and it even has a name: synthetic biology. Different people use synthetic biology to mean different things. Most often synthetic biology is reduced to synthetic genomics - re-designing the genomes of organisms to make them act in new ways. For example, microbes that produce fuel or pharmaceutical products. I use synthetic biology to mean creating new "trees of life", as opposed to synthetic genomics which engineers new branches to the existing Terran "tree". In my use, synthetic biology is about engineering an alternative biochemistry, thus "seeding" an alternative "tree" that then evolves on its own. In that, alternative life is as natural as any life we know.

I shall let others describe what it is and how they are going to do it. One thing is sure - it is going to be powerful - biologists will use synthesis the same way chemists today use synthesis routinely. But there is more! It is the inter-planetary reach of synthetic biology that makes it a new phenomenon in the cosmos we know.

Life is a planetary phenomenon that can transform a planet. The development of synthetic biology appears to be a stage in life's evolution when some of its forms can leave the host planet and adapt to other environments, potentially transforming other planets and eventually the Galaxy.

Professor Emeritus and Senior Research Scientist, New York University; author Planetary Dreams.


We may find the evidence we need within the frigid hydrocarbon lakes of Titan. Or perhaps we shall locate it by tracing the source of the methane hot spots on Mars to their deep underground origin. It may be easier though to sample in depth the contents of the water vapor and ice jets that erupt from “tiger stripe” cracks near the south pole of Enceladus. Least expensive of all would be to explore closer to home - in forsaken regions of Earth that are so hot, or so acidic, or so lacking in some vital nutrient necessary to life as we know it, that no creatures built of such life would deign to inhabit it. So many promising leads have appeared that it seems likely that only our desire and our finances stand as obstacles to our gaining the prize.

The prize in this case would be a sample of truly alien life. Despite the great legacy from pulp science fiction magazines and expensive Hollywood box office productions, aliens need not be green men, or menacing fanged monsters. Even humble microbes dismissed as “shower scum” in the New York Times would do nicely, provided that they met one key requirement. They must differ enough from us at the biochemical level so that it would be clear that they had started up and evolved on their own. Two separate origins in the same Solar System would imply that the universe is liberally sprinkled with life. Why would a discovery of this type change everything? It would not put food upon our dinner tables or shorten our commute to work. The change would come in our perception of the universe (which does contain everything that we know) and the place of life within it. We would learn that life, like art, can take on many forms and be constructed in countless ways and that we appear to be residents of a universe built to encourage such diversity.

We have always understood, of course, that living things came in many sizes and shapes: bacteria and whales, octopuses and centipedes. But we took it for granted that they were all made of one substance, one flesh. When they were ferocious, they could devour us. When they were domestic, we could make meals of them. This expectation was extended to alien life in fiction, myth and imagination. The Martian invaders of H.G. Wells "War of the Worlds" were ultimately subdued by infection by Earthly microbes. The creatures of the “Aliens” film series could incubate in humans, and draw nourishment from them. Humans could have sexual encounters with ancient Greek gods as well as with intruders in flying saucers.

Such events would have provoked little surprise in the 19th century, when the basic substance of life was thought to be a vital, gel-like protoplasm, which presumably would be the same everywhere. We now understand that life’s basic structure is much more intricate, but that the same building materials, nucleic acids, proteins, carbohydrates and fatty substances are used by all known life forms here. Some scientists have extended this conclusion to alien life. To quote Nobel Laureate George Wald "…So I tell my students: learn your biochemistry here and you will be able to pass examinations on Arcturus." This view carries practical consequences today: proposals for instruments to be flown to Mars and elsewhere include antibodies, probes, and other methods designed to detect the molecules familiar to us on Earth today.

If the microbes that we discoved on a nearby world had traveled from Earth within a meteorite, then this expectation would be valid.. By studying them, we might learn a lot about the earlier stages of the evolution of life here, and about the ability of Earth life to adapt to a very different environment. Such information would be valuable, but it would not change everything.

When we discover separate origin life, we will hit the jackpot. It will truly be made of a different flesh. Biochemists will be fascinated to learn how life functions such as energy capture, information storage and catalysis can be carried out by materials different from the life we know. The field of biology will be greatly enriched, and a host of new technical innovations may arise from the new knowledge, but even this would not change everything. The largest impact would take place in the way that we view our existence and plan for our future.

For stability and comfort, most human beings appear to require a narrative that provides meaning and purpose to their lives. In many religions, our behavior as individuals here determines our fate in a hereafter. Our actions are crucial in the grand scheme of things. Prior to the Copernican revolution, the Earth was naturally placed at the very center of the stage in the theater of existence. As suitable decorations, the various heavenly bodies were embedded in spheres that rotated above us.

Now we understand that our home world occupies only a minute fragment of an immense array of planets, stars, and galaxies. Our species has experienced only a sliver of the great expanse of time that has passed since the Big Bang, and much more is yet to come. The playing field has become immense.

Traditional religions have generally ignored this huge expansion of the cosmic scheme and cling to an essentially pre-Copernican view of existence. In doing so, they reduce their narratives to cherished folk tales, with a message as relevant today as the science of Aristotle. By contrast, some Nobel Laureate scientists have regarded the Universe as meaningless and pointless, with our life representing an accidental anomaly that will disappear sooner or later. Fortunately, another interpretation exists; one that is fully compatible with science though it extends beyond it.

Eric Chaisson, Paul Davies and others have described a viewpoint often called "Cosmic Evolution". The successive appearance of galaxies, stars and planets, atoms and molecules, life and intelligence are all seen as inherent in the laws that have governed our universe since the Big Bang. Minor alterations in many of the fundamental constants that are embedded in those laws would have made this succession of events impossible. For whatever reason, our universe is (to use Paul Davies' word) "bio-friendly".

If a separate origin of life were encountered within our own Solar System, the credibility of this viewpoint would be strengthened immensely. We could see ourselves as active participants in a vast cosmic competition that required all available space and time to play itself out to the fullest extent. To advance in the game and ultimately grasp its point, our mission would be to survive, prosper, evolve to the next stage and to expand into the greater universe (which would not be bad goals under any circumstance). By liberating humanity from a choice between obsolete dogma and unrelenting pessimism, this discovery would ultimately change everything.

Epistemologist of Randomness and Applied Statistician; Author, The Black Swan

The Idea of Negative and Iatrogenic Science

People want advice on how to get rich –and pay for it. Now how not to go bust does not appear to be valid advice –yet given that over time only a minority of companies do not go bust, avoiding death is the best possible –and most robust --advice. It is particularly good advice after your competitors get in trouble and you can go on legal pillages of their businesses. But few value such advice: this is the reason Wall Street quants, consultants, and investment managers are in business in spite of their charlatanic record. I was recently on TV and some "empty suit" kept bugging me for precise advice on how to pull out of the crisis. It was impossible to communicate my "what not to do" advice –or that my field is error avoidance not emergency room surgery, and that it could be a standalone discipline. Indeed I spent 12 years trying to explain that in many instances no models were better –and wiser –than the mathematical acrobatics we had in finance and it took a monumental crisis to convince people of the point.

Unfortunately such lack of rigor pervades the place where we expect it the least: institutional science. Science, particularly its academic version, never liked negative results, let alone the statement and advertizing of its own limits — the reward system is not set up for it. You get respect for doing funambulism or spectator sports –following the right steps to become the "Einstein of Economics" or the "next Darwin" rather than give society something real by debunking myths or by cataloguing where our knowledge stops.

[In some instances we accept limit of knowledge trumpeting, say, Gödel's "breakthrough" mathematical limits –because it shows elegance in formulation and mathematical prowess – though the importance of such limit is dwarfed by our practical limits in forecasting climate changes, crises, social turmoil, or the fate of the endowment funds that will finance research of such future "elegant" limits].

Let's consider Medicine –which only started saving lives less than a century ago (I am generous), and to a lesser extent than initially advertised in the popular literature, as the drops in mortality seem to arise much more from awareness of sanitation and the (random) discovery of antibiotics rather than therapeutic contributions. Doctors, driven by the beastly illusion of control, spent a long time killing patients, not considering that "doing nothing" could be a valid option –and research compiled by my colleague Spyros Makridakis shows that they still do to some extent. Indeed practitioners who were conservative and considered the possibility of letting nature do its job, or stated the limit of our medical understanding were until the 1960s accused of "therapeutic nihilism". It was deemed so "unscientific" to decide on a course of action based on an incomplete understanding to the human body –to say this is the limit of where my body of knowledge stops.

The very term iatrogenic, i.e., harm caused by the healer, is not well spread -- I have never seen it used outside medicine. In spite of my lifelong obsession with what is called "type 2 error", or false positive, I was only introduced to the concept very recently thanks to a conversation with the essayist Bryan Appleyard. How can such a major idea remained hidden from our consciousness?  Even in medicine, that is, modern medicine, the ancient concept "do no harm"   sneaked-in very late. The philosopher of Science Georges Canguilhem wondered why it was not until the 1950s that the idea came to us. This, to me, is a mystery: how professionals can cause harm for such a long time in the name of knowledge and get away with it. 

Sadly, further investigation shows that these iatrogenics were mere rediscoveries after science got too arrogant by the enlightenment. Alas, once again, the elders knew better –Greeks, Romans, Byzantines, and Arabs had a built-in respect for limits of knowledge. There is a treatise by the Medieval Arab philosopher and doctor Al-Ruhawi which betrays the familiarity of these Mediterranean cultures with iatrogenics. I have also in the past speculated that religion saved lives by taking the patient away from the doctor. You could satisfy your illusion of control by going to the Temple of Apollo rather than seeing the doctor. What is interesting is that the ancient Mediterraneans may have understood the trade-off very well and have accepted religion partly as a tool to tame such illusion of control.

I will conclude with the following statement: you cannot do anything with knowledge unless you know where it stops, and the costs of using it. Post enlightenment science, and its daughter superstar science, were lucky to have done well in (linear) physics, chemistry and engineering. But, at some point we need give up on elegance to focus on something that was given the short shrift for a very long time: the maps showing what current knowledge and current methods do not do for us; and a rigorous study of generalized scientific iatrogenics, what harm can be caused by science (or, better, an exposition of what harm has been done by science). I find it the most respectable of pursuits.

Futurist, Business Strategist; Cofounder. Global Business Network, a Monitor Company; Author, Inevitable Surprises


It is obvious that many of the most powerful new technologies are likely to flow from biology, but one of the most game changing is likely to be neural control of devices. We are not far from being able to "jack in" to the Web. Why do I think so? Several new biological tools are converging to give us both an understanding and new capabilities at the neuronal level.

The first new tools are the means to image the internal working of living cells, including neurons. The second are a variety of tools for precisely mapping complex bio-molecular mechanics so that we can understand and manipulate neural functioning within the cell at a molecular level. And finally the functional MRI is already giving us a systemic understanding of neural behavior.

Over the next several decades there are likely to be other significant new biological tools that I have not foreseen that will only strengthen my argument. But the combination of these three are already likely to give us sufficient insight into how the brain works that we will be able to construct the means to reliably read the state of the brain and use that information to control external devices.

The first steps toward that are already far along in the pursuit of advanced prosthetic devices. The ability to give the seriously injured the ability to control a prosthetic arm is already a reality in the laboratory. And we have read out neural states that seem to express language. It is a few big steps from there to the ability to reliably control devices.

But if this does come to pass the most obvious applications will be the control of such physical devices as cars, trucks, fighter jets, drones, machine tools, etc. But the most interesting device to control will be the computer cursor/keyboard. It is not hard to imagine a piece of technology, say like a blue tooth ear-piece that would enable one to think of a message and send it. It will be a form of one way electronically mediated telepathy. Reading out a message to another person will be fairly easy in the sense that control of the keyboard, will give one the ability to transmit.

But we are much further from understanding the read-in process. We may be able to send fairly easily but we may never figure out how to receive directly into the brain. We may have to read the information as we do today even if it is a neurally expressed message. It might be some advanced form of interface, e.g. electronic contact lenses, but it is just a better computer screen. But neuro-transmitting by itself will be sufficiently game changing, and also will be a step along the way to a radically different world of computer mediated reality in every sense.

Curator, Serpentine Gallery, London


Immanuel Wallerstein wrote in his essay "utopistics," about historical choices of the 21th century exploring what are possible better—not perfect—but better societies within the constraints of reality. We travel from dreams that were betrayed to a a world-system in structural crisis which is unpredictable and uncertain towards a new world system which goes beyond the limits of the 19th century paradigm of Liberal Capitalism.

In order to find a new sense of fulfillment, individually and collectively there will be a tendency towards increasing the number of de-commodified institutions. In Wallersteins words "instead of speaking about transforming hospitals and schools into profit-making institutions, let’s work it the other way. I think we move in the direction of de-commodifying a lot of things which we historically commodified. And this could be a very decentralized process. if you look at a lot of movements around the world, local and social movements, what they are objecting to in many ways is commodification." Examples are public libraries which are mostly free or free public galleries.

Artist Gustav Metzger who has pioneered alternative systems of production and circulation of art says " e transform these possibilities in a cooperative manner. We cannot radicalize enough against a radicalizing world. I see the possibility that artists will increasingly take over their own lives their own production in relation to society in a wider sense."

New structures of knowledge are an important aspect of new emerging world-systems. In the late eighteenth century the divorce happened between science and philosophy

Wallerstein says "What will change everything is to question it, to find a new, unified epistemology, whereas the "two cultures" were for 150 to 200 years centrifugal, complexity studies and cultural studies are centripetal, that is, moving towards each other."

English architect Cedric Price pioneered centripetal models of a transdisciplinary art centre and a transdiciplinary school in his visionary projects the Fun Palace and The Potteries Thinkbelt. This does not make him—and this is the paradox—a utopian architect. Much less than Archigram, for example, who has been interested in producing utopian drawings, Cedric Price took a pragmatic position and suggested engineering solutions. The Fun Palace was developed in the late sixties but remained unrealized and can best be described as a model for a trans-disciplinary cultural institution for the 21st Century. It was a complex comprised of various moveable facilities that gave shape to a set of ideas that theatre-producer Joan Littlewood had on how such a trans-disciplinary institution should work. The complex, according to Price, was made to enable self-participatory education and entertainment and was basically limited to a certain time and was seen as a university of the streets, which would be easy for people to visit and would also function as a test site.

Thus projects such as the Potteries Thinkbelt applied many ideas of the Fun Palace to a school, a university. The Potteries Thinkbelt was preceded by the Atom project from 1969, which was an atomic education facility spread over a whole city. The education was not to be for one age-group but was seen as a continuous necessity for all members of the community. Thus, this place of learning for all included an industrial education showcase, a home-study station, open teach-toys, open-air servicing, life-conditioners, electronic audio-visual equipment—all of those elements in an atomic way spread over the city.

So the whole city would become what Price called, a "town-brain it set the foundations for the Potteries Thinkbelt, where Price’s research into simple architectural components that build a complex system reached a kind of a peak. There, he drew up not only the hardware, but also an entire program, a major project that had a lot to do with his discussions with the cybernetician Gordon Pask. It also had much to do with the effort to reuse the entire area of Northern Stafordshire, an area of the fading and waning British ceramics industry. This ceramics industry no longer used the railway lines or stations, so Price proposed to establish a university research facility which would be belt-shaped and would go through this whole area using this reactivated infrastructure.

The plan was for a university of about 20,000 students built on a network of rail and motorways, where different stations would become places of knowledge production and where permanent places could move. His was the idea of a "classroom on the move" where you would have all sorts of housing for professors, researchers and students: crates, sprawls, capsules…And when the existing infrastructure would not be enough there would also be inflatables designed by Price and which could be easily and swiftly added.

The Potteries Thinkbelt and the Fun Palace remain unrealized, but can be revisited now, without the nostalgia of being "projects from the past." They can be seen as instruction models or recipes or triggers for artist and architects to engage with public space and reclaim public space in new and critical ways.

Artist; Composer; Recording Producer: U2, Talking Heads, Paul Simon; Recording Artist


What would change everything is not even a thought. It's more of a feeling.

Human development thus far has been fueled and guided by the feeling that things could be, and are probably going to be, better. The world was rich compared to its human population; there were new lands to conquer, new thoughts to nurture, and new resources to fuel it all. The great migrations of human history grew from the feeling that there was a better place, and the institutions of civilisation grew out of the feeling that checks on pure individual selfishness would produce a better world for everyone involved in the long term. 

What if this feeling changes? What if it comes to feel like there isn't a long term—or not one to look forward to? What if, instead of feeling that we are standing at the edge of a wild new continent full of promise and hazard, we start to feel that we're on an overcrowded lifeboat in hostile waters, fighting to stay on board, prepared to kill for the last scraps of food and water? 

Many of us grew up among the reverberations of the 1960's. At that time there was a feeling that the world could be a better place, and that our responsibility was to make it real by living it. Why did this take root? Probably because there was new wealth around, a new unifying mass culture, and a newly empowered generation whose life experience was that the graph could only point 'up'. In many ways their idealism paid off: the better results remain with us today, surfacing, for example, in the wiki-ised world of ideas-sharing of which this conversation is a part.

But suppose the feeling changes: that people start to anticipate the future world not in that way but instead as something more closely resembling the nightmare of desperation, fear and suspicion described in Cormac McCarthy's post-cataclysm novel The Road. What happens then? 

The following: Humans fragment into tighter, more selfish bands. Big institutions, because they operate on longer time-scales and require structures of social trust, don't cohere. There isn't time for them. Long term projects are abandoned—their payoffs are too remote. Global projects are abandoned—not enough trust to make them work. Resources that are already scarce will be rapidly exhausted as everybody tries to grab the last precious bits.  Any kind of social or global mobility is seen as a threat and harshly resisted. Freeloaders and brigands and pirates and cheats will take control. Survivalism rules. Might will be right.

This is a dark thought, but one to keep an eye on. Feelings are more dangerous than ideas, because they aren't susceptible to rational evaluation. They grow quietly, spreading underground, and erupt suddenly, all over the place. They can take hold quickly and run out of control ('FIRE!') and by their nature tend to be self-fueling. If our world becomes gripped by this particular feeling, everything it presupposes could soon become true.

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

next >