| Index | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |




2007

"WHAT ARE YOU OPTIMISTIC ABOUT?"


CONTRIBUTORS
Adam Bly
Judith Rich Harris
Marti Hearst
Marco Iacoboni
Tor Nørretranders
David Pescovitz
Jordan Pollack
Eduardo Punset
Robert Shapiro
Lee Smolin

Back to Index Page




LEE SMOLIN
Physicist, Perimeter Institute; Author, The Trouble With Physics

The Return of the Discipline of Experiment Will Transform Our Knowledge of Fundamental Physics

In science as in politics it seems that Eldredge and Gould's metaphor of punctuated equilibrium holds. When progress happens, it happens fast and the whole culture vibrates with the excitement of it. We have had a bit too much equilibrium lately, of disappointed expectations following as a natural consequence of unwisely reduced ambitions. But I am optimistic that the next decades will see breakthroughs in key problems on which we now seem stuck. In physics, new experiments including the LHC, AUGER, GLAST, PLANCK, LIGO and others are likely to transform our knowledge of fundamental physics, and end the long period when theory sought to progress without the discipline of experiment. Very likely we will be surprised and humbled by what is seen, but this will be followed by rapid progress as new ideas are quickly invented to explain the surprising data.

How can I be optimistic without knowing what direction science will take? This is exactly the point. There are two kinds of optimism, the optimism of people who think they know the future and the optimism of people who believe the future will be more interesting and, if always imperfect, more wonderful than they can imagine. I am of the second kind. The first kind sometimes comes along with a belief that time and change are illusions, and that the world is evolving towards an eternal timeless state of perfection. This is the optimism of religious fundamentalists and orthodox Marxists, and one sees it reflected also in the cosmologies in which our evolving universe is just a transient fluctuation in an otherwise permanent state of thermal equilibrium. The opposite kind of optimism lies behind the evolutionary theorists who believe the world is so intricate that the simplest mechanism that could predict the future of life and the cosmos is the universe itself. If we are the first kind of optimist we seek to transcend the complexities of life to discover something eternal behind it, something like the imagined view of God. If we are the second, we seek to live and think within the swirl of life; we aim for comprehension and wisdom but have no illusions of transcendence or control.


JUDITH RICH HARRIS
Independent Investigator and Theoretician; Author,
No Two Alike: Human Nature and Human Individuality

The Survival of Friendship

I am optimistic about human relationships — in particular, about friendship. Perhaps you have heard gloomy predictions about friendship: it's dying out, people no longer have friends they can confide in, loneliness is on the rise.

But friendship isn't dying out: it's just changing, adapting to the changes in the world. People are discovering different ways of getting together. It may be harder to find a bowling partner but it's easier to find someone to chat with, because there are many more ways to chat.

When I was a child, people with chronic illnesses were described as "shut-ins." Now a person can be shut in without being shut out. I have friends whom I know only through e-mail conversations but who are as dear to me as my college roommate and dearer by far than my next-door neighbor.

The desire to form and maintain relationships is one of the built-ins of human nature. Primates are social animals, and humans are the most social of all. An extravagant amount of mental capacity is devoted to relationships. We can recognize at a glance the faces of thousands of different people and, with equal ease, remember whether or not we like them. With a bit more effort, we can dredge up other useful information about most of them: their names or professions or where we met them. Throughout our lives we collect and store information about specific individuals, so that — just in case we ever run into them again — we will know how to act. We even store information about people we have never met and whose faces we have never seen.

Collecting people information is something we do without training and with no reward other than the enjoyment we get from doing it. We don't need a nudge from the conscious mind, telling us that the information may come in handy someday. But in fact it may come in handy. People we have never met before may be important to us in the future. They may become our trading partners or employers. They may become our lovers or our rivals.

Or they may simply become our friends.


DAVID PESCOVITZ
Co-editor,
Boing Boing; Research Affiliate, Institute for the Future; Editor-at-Large, MAKE
:

We're Recognizing That the World Is a Wunderkammer

Several years ago, I became fascinated with cabinets of curiosity. The Renaissance predecessor to modern day museums, these cabinets, sometimes entire rooms, were filled with a mish-mash of objects, both natural and artificial, that embodied the wonder of the world. (The German term for these collections, wunderkammer, literally means "chamber of wonders.") Inside, you might find a mummy's hand, a "unicorn's horn," exotic seashells from distant lands, odd insects pinned and cataloged, and possibly even a two-headed lizard in a jar of formaldehyde. As Tradescant the Elder, one of the most notable cabinet keepers in history, requested in a letter to the Secretary of the English Navy in 1625, this was a quest for "Any thing that is strang."

Inspired by this celebration of science, art, and the strang(e), I picked up an old Chinese tea cabinet at a flea market and began to build my own wunderkammer. I quickly filled the shelves with items of the type I thought were "supposed" to be in any wunderkammer worth its weight in weirdness—antique medical instruments, a primitive eye gouging weapon from Rarotonga, a Balinese shadow puppet, a snake stuffed in a perpetual strike. Things became more interesting though once the collection process became more organic and I added items that genuinely spoke to my personal sense of the curious : a 1/1 millionth scale model of Frank Lloyd Wright's Fallingwater, fabricated by engineers Ken Goldberg and Karl Bohringer using techniques borrowed from microscale manufacturing; a vial of carbon nanotubes; a Houdini automaton's autograph; a resin model of a telerobotic insect outfitted with solar cells for wings.

Now, this small cabinet in the corner of my office serves as a constant reminder for me that the world is filled with wonder, and curiosity is something to be cultivated at every opportunity. Indeed, we're at our best when we're curious. And the beauty of curiosity is that we're all naturals. Curiosity is how babies learn. In fact, sparking someone's curiosity, at any age, seems to be perfect pedagogy. And, as the professor says in The Day The Earth Stood Still, "It isn't faith that makes good science...It's curiosity."

Now, I wouldn't dare suggest that there's a Renaissance revival afoot, but I'm optimistic that the pendulum is swinging at least slightly back toward the hey-day of natural history, citizen science, backyard astronomy, and other spirited intellectual pursuits. Several recent museum exhibitions have explored the cabinets of curiosity as an organizational principle, including one dedicated to the appropriately odd juxtaposition of art and cryptozoology. Even the wunderkammer aesthetic has bubbled up into popular consciousness.

Many blogs, including the one I co-edit, have been described as virtual cabinets of curiosity—storehouses of unusual links, odd memes, fringe culture, and weird news. Nearly every major city has at least one carefully-curated "Olde Curiosity Shoppe" selling strange objets d'art and natural oddities packaged as Victorian chic. In fact, I was recently struck by the obviously wunderkammer-inspired display of mounted insects and red coral on sale at a mainstream home decor store in the mall. And in the ultimate evidence of a trend, at least two coffee table books on the subject have been published in the last few years.

Most of all though, I'm heartened by the unbridled curiosity fueling today's passionate DIY movement. A growing number of ingenious individuals are hacking Priuses to boost the gas mileage, installing Linux on iPods to record high-quality audio, and building backyard weather balloons. On one hand, these makers are dissatisfied with off-the-shelf products. At a deeper level though, they're driven by a daring inquisitiveness about what lies "under the hood" of today's technology and how they can better what they buy, or build it from scratch. For these makers—in the tradition of crafters, tinkers, scientists, engineers, artisans, and hot rodders who came before—the process is the product. The fun is in the fix. No user serviceable parts inside? Says who.

I'm optimistic that in the coming few years, the DIY movement will reach not only widespread awareness but widespread participation. I'm optimistic that smart companies, instead of criminalizing hackers, will encourage these user-innovators and solicit their feedback to design better products. I'm optimistic that science education in the United States can be saved if students are given the opportunity to learn by doing, not just by reading about what someone else has done.

When I watch a screwdriver-wielding maker eagerly voiding another warranty, I see a spark of the same childlike curiosity that fills a baby's eyes as he first explores his world, optimistic that something wonderful lies ahead.


ROBERT SHAPIRO
Professor Emeritus, Senior Research Scientist, Department of Chemistry, New York University; Author, Planetary Dreams

Strangers In Our Midst

I am optimistic about the prospect of detecting alternative life. All life that we know, as different as it may appear in size and shape, shares a common heritage at the biochemical level. From amoebas to zebras, familiar life is dominated by two types of large molecule—nucleic acids and proteins. This biochemical similarity, which extends to many other features as well, implies that we are all products of a single life-starting event.

If this event was extremely improbable, then Earth may be the only seat of life in an immense and barren universe. This picture would be little changed if our kind of life has drifted across empty space to fertilize our nearest planetary neighbors. As Jacques Monod commented: "The universe was not pregnant with life nor the biosphere with man. Our number came up in the Monte Carlo game."

As no firm evidence exists that supports or denies this package of gloom, we are not obliged to purchase it. A different scientific position holds that the generation of life is written into the laws that govern the universe. If a limited set of environmental requirements are satisfied—a supply of useful energy, fertile material to absorb and use the energy, and a fluid medium to support the transaction, then life will emerge. In the words of biologist Stuart Kauffman: "If all this is true, life is vastly more probable than we have supposed. Not only are we at home in the universe, but we are far more likely to share it with unknown companions."

The issue can be settled by scientific exploration. The discovery of life forms sufficiently different from our own to indicate a separate origin would tilt the debate decisively in favor of a fertile universe. The search for such life has traditionally been directed to extraterrestrial locales. Spacecraft have conducted preliminary surveys of Mars, Europa, Titan and Enceladus, and discovered that one or more of the necessary requirements have been met. As human have not yet traveled further than the Moon, the search for novel life forms on these worlds is likely to be carried out will be carried out by robots. If any creatures are encountered, then their biochemical characterization will also be conducted with the use of pre-programmed instruments, but weight limitations will constrain the versatility of the tools that can be landed on these distant worlds. The Viking missions of 1976 illustrated the ambiguities that can arise in such explorations. Even if encouraging data was returned to Earth, a sample return mission would most likely be needed to settle a question of such magnitude. Considerations of safety would make stringent quarantine measures mandatory for any returned samples.

Extensive planning and testing would be needed in advance to design a weight-limited apparatus capable of identifying alternative life. As astrobiology budgets are often under pressure, some delays would also be likely before such an apparatus was launched. Further, all of the above listed sites except Mars would require a number of years of travel time to bring the instrument package to its destination. Thus, even if the fertile universe view was correct, many decades might pass before the issue was settled.

Fortunately, a new strategy has emerged that is capable of providing much more rapid returns. One world exists that is known to have all of the capabilities needed to generate and sustain life. It is close at hand, so that any possible samples of alternative life could quickly be subjected to examination in depth, using the best instruments that science can provide. Human scientists would supervise the studies directly, and modify them as needed. That world is Earth.

The suggestion that alternative, novel life forms might be found on our own planet runs of course directly into the obstacle of an entrenched paradigm. Biologists have characterized hosts of life forms, particularly at the microbial level, and encountered the familiar nucleic acid-protein based system every time. Our type of life reigns on this planet. If alternative creatures ever existed, then surely they were eliminated during the intense combat of evolution. The fact that no such creatures had turned up despite the intense efforts that biologists have expended in studying life on Earth has served to reinforce this widely accepted conclusion.

Recently, however, two papers have challenged this assumption. One, written in Australia, was provided by physicist Paul Davies and mathematician Charles Lineweaver. The other was authored by Colorado-based philosopher Carol Cleland and microbiologist Shelley Copley. Three of these writers and a number of other scientists who have been interested in the question of extraterrestrial life (myself included) gathered at Arizona State University to discuss this possibility. A central conclusion that emerged was that alternative Earth life may simply have been overlooked because microbiological search techniques were targeted at our own kind of life. Many diverse cell-like objects can be observed when samples taken from soil or water are examined under the microscope. Only about 1 % of them choose to multiply when conventional growth media are added to the mixture and these colonies are the easiest to characterize. In some cases, newer techniques based upon nucleic acid sequencing have been used to identify additional species. Some of them represent early and unexpected branches from our presumed universal tree of life. The existence of truly different organisms in that mix, for example ones that lacked nucleic acids entirely and stored their hereditary information in some other way, was hardly considered. If such organisms existed, they would most likely be products of that speculative second origin.       

How could such organisms have survived the competition of our robust nucleic acid based life? In one scenario, they may have preferred to dine upon alternative food stuffs not favored by familiar life, selecting for example arsenate in place of phosphate, unfamiliar amino acids or mirror image forms of conventional biomolecules. The most extreme example of this type may be the speculative mineral-based life forms suggested by Scottish chemist Graham Cairns-Smith.

A different strategy would also allow alternative Earth life to flourish without direct competition. The organisms may have selected environments that are uninhabitable by conventional life. Conventional terrestrial organisms have shown great versatility in adapting to extremes of acidity, temperature, dryness, saltiness, radiation and other variables. Even so, their adaptability is not unlimited and some niches yet remain which they cannot utilize. Yet organisms with a very different set of internal chemicals might find them to be ideal dwelling places. One such locality that was mentioned at the conference was Iron Mountain, California, from whose interior extremely acidic waters emerge.

Ironically (forgive the pun) a front page story in the New York Times of Dec. 23, 2006, derived from a paper published in Science a day earlier reported the isolation of novel microorganisms from the waters of Iron Mountain. Their novelty arose from the record-breaking smallness of the cells, rather than from a difference in their internal biochemistry sufficient to suggest a separate origin. Yet the group of California-based scientists that had made the discovery also noted the presence of "rounded objects" that "were not shown to contain DNA."

How could such objects, or others that may turn up if a deliberate search for biochemically novel organisms is made, be shown to be offspring of a second origin? My own suggestion is that an inventory be made, as complete as possible, of their chemical contents. Many advanced instruments have been devised in recent years that can perform a microchemical analysis of tiny samples. No questions of instrument payload, robotic analysis or sample return need be considered, in contrast to the case of specimens taken on other worlds. If the analysis should reveal a chemical suite that differed notably from those derived from conventional life and from the near-random mixtures produced by abiotic processes, then we would have a strong indication that we may have hit a scientific jackpot. Another approach to the identification of alternative life would involve the use of unorthodox culture media, toxic to conventional life, that induce the alternative organisms to grow. More ingenious strategies may emerge when the energies of additional scientists are turned toward this question.

Of course, a thorough search of this planet may yet return empty-handed. My own optimism is based on my particular outlook on the mechanisms involved in the origin of life. But that is another story.

TOR NØRRETRANDERS
Science Writer; Consultant; Lecturer, Copenhagen; Author, The Generous Man

Optimism...

I am optimistic about optimism. It has a bright future.

Not long ago, a few decades back, it became fashionable to be pessimistic. Gloomy predictions were sexy and sure signs of a progressive mind. Any true intellectual was sceptical about the survival of humanity.

There were good reasons for that. In the early 1980s we seemed to be a little stuck. A major nuclear exchange between superpowers was a very real threat, the environmental crisis was not recognised by the public (and much less by the politicians) and the world population just seemed to grow exponentially forever.

But the mood changed. A nuclear disarmament spiral started, most populations in industrialized countries became aware of the environment and demanded political action, the growth of the world population started to slow down.

Also, the internet and the web seemed to offer technologies for change and democratization. During the 1990s optimism boomed.

Boom! But then came the dot-com crash and 9/11. The liberating force of the internet was still there, even if hopeful and greedy investors didn't make money on it (but as we now know, it was released by the Open Source movement and phenomena like Web 2.0). Despite terrorism, the safety situation has not really changed in any quantitative sense.

Also, climate researchers have now reached agreement that the global warming is really here. The explanation is our own stupid and wasteful use of fossilized depots of energy in a world full of an energy flow from the Sun much, much larger than the what we need.

So it is time to be pessimistic again? No way! The environmental problems are much too serious to be left to the pessimists.

We need to make a change and do it right away. But we know what to do. We need a suite of high tech solutions that will enable us to plug into the good old resource base of humanity: Solar energy, recycled materials and a decentralized, peer-to-peer network to enable information flow.

We are about to make a very old niche in nature habitable for a huge human population through the use of hi tech solutions from the info, nano and bio toolboxes. We must awaken the enlightening spirit of reinventing everything, the future included.

We have to rethink the civilization we have developed since the introduction of agriculture in the last great climate crisis, at the end of the last Ice Age.

We have to create a Civilization 2.0 and we have to do it now. And the fine thing is that we have already started creating the technology and the dreams. Human beings have a talent for crisis management.

Without optimism, we would not be here. The rational evidence for giving up is always there, but we survived thanks to the the faith and the strength to go on and on, despite all warnings.

Pessimism is a self-falsifying prophecy. Optimism always wins. Until nobody is around to know that it did not.

Optimize optimism!


MARTI HEARST
Computer Scientist, UC Berkeley, School of Information

The Rise of Usability

I am optimistic that the values and principles of good user interface design will increasingly be practiced by technology designers and expected by technology users.

The design of a computer user interface can influence whether the outcome of an election is fair, a patient receives the right medicine, or a helicopter pilot makes a safe landing. Perhaps even more importantly, when technology is designed to mesh well with how people think and how they want to live, then it enhances and enriches their lives. Poorly designed interfaces that treat people inhumanely can contribute to the feelings of apprehension that people often associate with our technology-saturated world.

Good interface design is currently more of a practice than a science, although the field of human-computer interaction makes use of results from cognitive science and relevant branches of psychology where applicable. The rise of the World Wide Web has accelerated advances in and understanding of usability, for main two reasons. First, before the web, most complex computer interfaces were visible only to those who could afford to purchase the expensive software packages. Most users would not see more than one design for a given application. The web, in yet another example of its leveling effect, allows nearly everyone to see nearly every interface. Thus designers can learn rapidly from what others have done, and users can see if one web site's experience is substandard compared to others. Second, the default setting for web pages and browsers allows designers to freely see the source code behind each web page, and thus learn from one another how to code the best designs. The rise of the web has increased consumer demand and awareness of good design, and in my observation has increased the perceived value of user interface design within computer science departments.

Unfortunately, misguided views about usability still cause significant damage in today's world. In the 2000 U.S. elections, poor ballot design led thousands of voters in Palm Beach, Florida to vote for the wrong candidate, thus turning the tide of the entire presidential election. At the time, some observers made the ignorant claim that voters who could not understand the Palm Beach butterfly ballot were not bright enough to vote. I wonder if people who made such claims have never made the frustrating "mistake" of trying to pull open a door that requires pushing. Usability experts see this kind of problem as an error in the design of the door, rather than a problem with the person trying to leave the room.

It appears that some Florida election officials did not learn the lessons of the 2000 election. In the Sarasota County, Florida election of 2006, evidence suggests that poor design of an electronic ballot led to massive under voting. One in seven voters did not mark any choice in a hotly contested congressional race that was decided by fewer than 400 votes. Usability mistakes similar to those in Palm Beach were repeated in Sarasota. But it is unfair to expect election officials to be experts in usability and information design; rather what is lacking is a general recognition that an understanding of how people think and use technology is integral to ballot design and fair elections. Just as computer experts design and maintain the e-voting machines, usability experts should assess all ballot designs before they are released to the public. And in the future we may well see automated usability checkers, akin to grammar checkers in word processors, for applications such as ballot design.

Ballot design is just one example for which interface design matters. There is ample evidence that good design reduces errors and increases enjoyment of the use of technology. Fortunately, an appreciation of the importance of good design for human use of technology is experiencing an increasingly widening scope.


ADAM BLY
Founder and Editor-in-Chief, Seed

Science on the Agenda

I am optimistic that science is recapturing the attention and imagination of world leaders.

Witness, for example, the agendas of the World Economic Forum, the Clinton Global Initiative, or the African Union Summit; science has made a well-timed transition from a topic of peripheral interest to the leaders of the world to one inextricably tied to issues of development, global health, innovation, competitiveness, and energy. At a time when science is spurring markets, arts and ideas, it is now making its way into our halls of power with considerable momentum.

The critical challenge is for our understanding of science to keep up with our growing interest in science. Our new global science culture demands a new level of science literacy, for general populations and indeed for the leaders that govern them. What constitutes a science literate citizen in the 21st century is one of the most important questions we need to collectively address today.

We can certainly imagine that it is no simple task to convince a continent struggling with clear and present threats that it should think about its future, let alone take action. But across the developing world, science literacy is emerging as a primary focus of its leadership. The argument goes as follows: move away from dependence on short-term relief and toward the development of a long-term scientific infrastructure that generates its own solutions. This fundamentally entails an investment in people who will shape their own sustainable science culture.

This month's African Union Summit in Addis Ababa will focus almost exclusively on this very topic. This comes on the heels of a consensus by the continent’s education ministers that science “is the most important tool available for addressing challenges to development and poverty eradication, and participating in the global economy.” China, for the first time, has made raising science literacy an official part of its development strategy. It is worth noting that China’s plan calls for science literacy to extend across demographics — from urban workers to rural communities to government officials — each for different reasons but all for a common goal.

This past year we have heard about the potential for the West to generate intellectual ROI from its aid to the developing world — new insight into disease for example. It is exciting to imagine how this cross-continental laboratory may pioneer new approaches to science literacy with global consequence.

Science solves problems. And this should be its consistent tagline in the developing world. In the developed world, however, science will spark more than solutions. It can spark a renaissance.

It is simple to tie science to money and military, drugs and technologies, present and future. It will be those leaders in the developed world who embrace science's blue sky potential, its ability to inspire us and change us long-term, who will most significantly affect their nations and the world. Now is the time for courageous science leadership.

In Europe, the Large Hadron Collider, the biggest science experiment of our time and herald of a new era of Big Science, will go online next year, corralling the collective imagination of (at least) a continent. Tony Blair has reaffirmed that Britain's "future prosperity rests more than ever before on the hard work and genius of our scientists." And Germany's newly elected physical chemist-turned-Chancellor, Angela Merkel, has made science one of the priorities for Germany's upcoming EU presidency.

In 1969, Robert Wilson, then the director of Fermilab, testified before the US Congress in support of his multi-million dollar particle accelerator. He said: "It has only to do with the respect with which we regard one another, the dignity of men, our love of culture. It has to do with: Are we good painters, good sculptors, great poets? I mean all the things we really venerate in our country and are patriotic about. It has nothing to do directly with defending our country except to make it worth defending."

It will take inspired, informed, and heroic leaders to drive our global science culture forward — toward the development of Africa, the emergence of a renaissance or an outcome we have yet to imagine. After an all-too-long period where it felt like science and scientists had lost their seat at the table, I am optimistic we're about to witness a new era of science-savvy.


JORDAN POLLACK
Computer Scientist, Brandeis University

AI Will Arise

I often attack the original "we can program it" direction of the field of Artificial Intelligence, but am still optimistic that our primitive electromechanical and computing machines will one day become intelligent enough to treat as living creatures.

I have a predictive sketch for how intelligent machines might arrive. My definition of a robot is any device—controlled by software—interacting with the physical world. An economically viable robot is such a system that earns a consistent return on investment (ROI). The ATM, the ink-jet printer, and the disk drive are today's omnipresent robots, they just don't appear as the robots of science fiction.

I see three streams which can come together in the future to allow the emergence of intelligent human-like robots.

The first stream is the lowly "web bot." Moving beyond "Eliza's" in text chat rooms, these animated humans often exist on web pages, attracting customers, helping them navigate, or selling. Another class of virtual humans are employed as extras in video games and movies. These software puppets will enter a positive feedback loop as they are programmed to exploit human psychological weaknesses. In other words, when a virtual human becomes an effective sales machine for, say, life insurance or securities, they will have achieved the ROI.

The second stream is animatronics. The word, coined by Disney, is about making mechatronic puppets which entertain us, i.e. Chuck E Cheese and Big Mouth Billy Bass. But animatronics is fairly expensive, and mainly used as Hollywood props in big-budget movies. The toy industry is capable of delivering inexpensive animatronics, from Chatty Cathy, Teddy Ruxpin and Furby to Robosapien and Pleo, but each one of these robot toys is a standalone success derived from cheap manufacturing and mass marketing, rather than the result of an ever-more capable practice. Nevertheless, I expect that eventually some kind of animatronic toy platform, like the animated Chimp and Elvis heads from Wowwee, will eventually "catch," and profits will drive efficiency until humanoid puppets are reasonably priced.

These two streams will then become symbiotic, where the best salesbot software running on inexpensive humanoid animatronics can start to displace human salespeople from car showrooms and furniture stores. But, these saledroids will still be empty puppets unless inhabited by low wage workers over broadband.

The third line has to identify and attack the core problem of AI, that sentient life forms are several orders of magnitude more complex than the most complicated systems designed and built by humans: Our Software. Building software using best engineering practices always bogs down between ten and one hundred million lines of code, before it becomes unmanageable by human corporations. Assume that a sentient animal mind would take tens of billions of lines of code, just like bodies are made of tens of billions of living cells cooperating to form a whole. In order to understand how nature could design systems of far greater complexity than human engineers, we must focus not on simulating human cognitive faculties, nor on trying to understand the brain, but on the process which can design such minds and brains.

Through work on evolutionary and co-evolutionary machine learning, we have identified missing principles of evolutionary theory as implemented computationally. We've developed systems which surpass human designs of sorting networks and cellular automata rules, shown how co-evolving robot bodies and brains could be automatically manufactured, and developed new incentive structures which can motivate a community of learners to become each other's teachers.

The third stream, sentience, I believe won't be programmed directly, but will be a result of successfully replicating how evolution has achieved an open-ended self-organizing process on a computationally universal substrate. Once sentience is achieved, it will happily reside, and earn a living selling used cars, in the aforementioned electronic puppets.


EDUARDO PUNSET
Scientist; Spanish Television Presenter; Author, The Happiness Trip

We Can No Longer Be Sure Of Anything

The brain does not see a thing. Most of its energy is consumed predicting in darkness. At last we understand why we only see what we want to see, just as the moon looms larger on the earthly horizon than above. Now we know that visible light is only a tiny fraction of the whole spectrum. We can no longer be sure of anything. So we need not fight against somebody's views nor die for our own convictions.


MARCO IACOBONI
Neuroscientist; Director, Transcranial Magnetic Stimulation Lab, UCLA

Neuroscience Will Change Society

Some time ago I believed that a book could radically change society. I guess my belief was an extreme form of optimism. One of the books I thought could change society was Anti-Oedipus, the book that was written some thirty years ago by the philosopher Gilles Deleuze and the psychiatrist Felix Guattari. At some point, I can't even figure out when, I must have lost my belief in the power of books in changing society. But, the good news is that my belief is coming back. It is coming back in a slightly different form. What I am optimistic about is that neuroscience research will make our society a better one.

I spent the last 20 years doing neuroscience research. To make a long story short, a concept that emerges from recent neuroscience research is that humans are "wired for empathy". We have cells in our brains that make us understand each other in a simple, unmediated, automatic manner. But, if our neurobiology makes us wired for empathy, why is our world so full of atrocities?

The explanation for this apparent paradox is probably as follows. The neurobiological mechanisms that make us wired for empathy work at a pre-reflective, automatic, implicit level. Our societies are built on deliberate, reflective, explicit discourse. The two different levels of implicit and explicit mental processes rarely intersect; indeed there is evidence that they can often dissociate. This is probably why the massive belief systems—from religious to political ones—that operate at the deliberate, reflective level are able to divide us in such a powerful way even though our neurobiology should bring us together.

The good news is that the awareness of neurobiological mechanisms that make us wired for empathy is entering the public discourse through the activities of the third culture. This awareness won't go away and will seep through the reflective level of our mental processes. Indeed, people seem to have an intuitive understanding of how neural mechanisms for empathy work. It seems that people 'recognize' how their brain works, when they are told about it. People can finally articulate what they already 'knew' at a pre-reflective level. My optimism is that this explicit level of understanding of our empathic nature will at some point dissolve the massive belief systems that dominate our societies and that threaten to destroy us.


< previous

| Index | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

next >

|Top|