< previous

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >



Simon Baron-Cohen
Philip Campbell
George Church
Chris DiBona
Seth Lloyd
Elizabeth Loftus
Ernst Poppel
Gino Segre
Terrence Sejnowski
Max Tegmark

Back to Index Page


Professor of Genetics, Harvard Medical School; Director, Center for Computational Genetics

Personal Genomics Will Arrive This Year, and With It a Revolutionary Wave Of Volunteerism and Self-Knowledge

A small but crucial set of human pursuits have experienced smooth exponential growth for many decades—sometimes so smooth as to be hidden and then revealed with a jolt. These growth industries involve information—reading and writing complex artifacts made of electronic and/or DNA parts. The iconic example is the personal computer, which though traceable back to 1962, became manifest in 1993 when free web browsers spawned millions of personal and commercial web pages within one year. I’m optimistic that something similar is happening to personal genomics this year. We are in free-fall from a stratospheric $3 billion generic genome sequence (which only an expert could love) down to a sea level price for our personal genomic data. Early-adopters are posing and positing how to exploit it, while surrounded by envious and oblivious bystanders. We can now pinpoint the 1% of our genomes which in concert with our environment influences the traits that make us different from one another. Ways to tease out that key 1%, coalesce with "next-generation" DNA reading technology popping up this year, to suddenly bring the street-price down to $3000—about as easy (or hard) to justify as buying some bleeding-edge electronic gadget at an early stage when only minimal software is ready.

I am optimistic that while society is not now ready, it will be this year. The inevitable initial concerns about techno-downsides, e.g. the "Genetic Information Nondiscrimination Act of 2005", are already morphing into concerns about how to make these new gifts useful and reliable.  Witness just this August, the US Senate began consideration of the "Genomics and Personalized Medicine Act of 2006". Momentum is thus building for millions of people to volunteer to have their genome data correlated with their physical-traits to benefit the billions who will hang back (due to inertia or uncertainty). These volunteers deserve up-to-the minute education in genetics, media, and privacy issues. They deserve protection, encouragement and maybe even rewards. Many current medical research studies do not encourage their human research subjects to fully fathom the potential identifiability of both their personal genome and physical traits data, nor to learn enough to access and appreciate their own data.  The cost of educating the subjects is far less than the other costs of such studies and yields benefits far beyond the immediate need for fully informed consent. In contrast, other studies like the Personal Genome Project, emphasize pre-education sufficient to choose among (1) opting-out of the study completely, (2) de-linking genomic and physical traits, (3) restricting linked data to qualified researchers, (4) allow peer-to-peer sharing, or (5) a fully open public database.  The subjects can redact specific items in their records at any point, realizing that items used to support conclusions in published work cannot be easily reversed. The excitement and dedication of these volunteers is already awesome.

I am optimistic that millions more will share. Millions already do share to benefit society (or whatever) in old and new social phenomena ranging from the Red Cross to Wikipedia, from MySpace/YouTube to SEC compensation disclosures. We wear ribbons and openly share personal experiences on topics that were once taboo, hidden from view, like depression, sexual orientation, and cancer. Rabbis' daily tasks now include genetic counseling. Our ability to track disease spread, not just HIV, bird flu, or bioterrorism, but even the common cold, will benefit from the new technologies and the new openness—leading to a bio-weather map. We will learn so much more about ourselves and how we interact with our environment and our fellow humans. We will be able to connect with other people who share our traits. I am optimistic that we will not be de-humanized (continuing the legacy of feudalism and industrial revolution), but we might be re-humanized, relieved of a few more ailments, to contemplate our place in the universe, and transcend out brutal past.

Open Source Programs Manager, Google Inc.; Editor,
Open Sources: Voices From the Open Source Software Revolution and Open Sources 2.0

Widely Available, Constantly Renewing, High Resolution Images of the Earth Will End Conflict and Ecological Devastation As We Know It

I am not so much of a fool to think that war will end, no matter how much I wish that our shared future could include such a thing. Nor do I think that people will stop the careless destruction of flora and fauna for personal, corporate, national or international gain. I do believe that the advent of rapidly updating, citizenry-available high resolution imagery will remove the protection of the veil of ignorance and secrecy from the powerful and exploitative among us.

One cannot tell us that a clear cutting a forest isn't so bad if you can see past the half acre of preserved trees into the desert like atmosphere of the former rain forest. One cannot tell you that they are not destroying villages in Sudan if you can view the burned out carcasses of the homes of the slaughtered. One cannot intimate that the impact of a dam is minimal as humanity watches countless villages being submerged in real time. One cannot paint a war as a simple police action when the results of the carpet bombing will be available in near real time on the internet.

We have already started down this path, with journalists, bloggers and photographers taking pictures and in near real time uploading them to any of a variety of websites for people to see. Secrecy of this kind is dying, but it needs one last nudge to push our national and international leadership into a realm of truth unheard of to date.

With sufficient resolution, many things will be as clear to all: Troop movements, power plant placement, ill-conceived dumping, or just your neighbor building a pool. I am optimistic enough to think that the long term reaction to this kind of knowledge will be the recognition of the necessity, or the proper management and monitored phase out of the unwanted. I am not as optimistic about the short term, with those in power opting to suppress this kind of information access, or worse, acting on the new knowledge by launching into a boil the conflicts that have been simmering for uncountable years.

Can our leaders stand before us and say a thing is not occurring if we can see via our low earth orbiting eyes that it is in fact occurring? Only the truly deluded will be unable to see and then perhaps we can remove them and their psychopaths from power. A more honest existence, with humankind understanding the full, global, impact of its decisions, is in our future if we can reach it. It is likely to be a rough ride.

Computational Neuroscientist, Salk Institute, Coauthor, The Computational Brain

A Breakthrough In Understanding Intelligence Is Around The Corner

The clinically depressed often have a more realistic view of their problems than those who are optimistic. Without a biological drive for optimism it might be difficult to motivate humans to take on difficult problems and face long odds. What optimistic view of the future drives string theorists in physics working on theories that are probably hundreds of years ahead of their time? There is always the hope that a breakthrough is just around the corner.

In 1956 a small group of optimists met for a summer conference at Dartmouth, inspired by the recent invention of digital computers and breakthroughs in writing computer programs that could solve mathematical theorems and play games. Since mathematics was among the highest levels of human achievement, they thought that engineered intelligence was immanent. Last summer, 50 years later, another meeting was held at Dartmouth that brought together the founders of Artificial Intelligence and a new generation of researchers. Despite all the evidence to the contrary, the pioneers from the first meeting were still optimistic and chided the younger generation for having given up the goal of achieving human level intelligence.

Problems that seem easy, like seeing, hearing and moving about, are much more difficult to program than theorem proving and chess. How could this be?  It took hundreds of millions of years to evolve efficient ways for animals to find food, avoid danger and interact with one another, but humans have been developing mathematics for only a few thousand years, probably using bits of our brains that were meant to do something altogether different. We vastly underestimated the complexity of our interactions with the world because we are unaware of the immense computation our brains perform to make seeing objects and turning doorknobs seem effortless.

The early pioneers of AI sought logical descriptions that were black or white and geometric models with a few parameters, but the world is high dimensional and comes in shades of gray. The new generation of researchers has made progress by focusing on specific problems in computer vision, planning, and other areas of AI. Intractable problems have yielded to probabilistic analysis of large databases using powerful statistical techniques. The first algorithms that could handle this complexity were neural networks with many thousands of parameters that learned to categorize input patterns from labeled examples. New machine learning algorithms have been discovered that can extract hidden statistical structure from large datasets without the need for any labels. Progress is accelerating now that the internet provides truly large datasets of text and images. Computational linguists, for example, have adopted statistical algorithms for parsing sentences and language translation, having found transformational grammars too impoverished.

One of the most impressive learning systems is TD-Gammon, a computer program that taught itself to play backgammon at the championship level. Built by Gerald Tesauro at IBM Yorktown Heights, TD-Gammon started out with little more than the board position and the rules of the game, and the only feedback was who won. TD-gammon solved the temporal credit assignment problem:  If after a long string of choices you win, how do you know which choices were responsible for the victory?  Unlike rule-based game programs, TD-Gammon discovered better ways to play positions on its own, and developed a surprisingly subtle sense of when to play safely and when to be aggressive. This captures some important aspects of human intelligence.

Neuroscientists have discovered that dopamine neurons, found in the brains of all vertebrates, are central to reward learning. The transient responses of dopamine neurons signal to the brain predictions for future reward, which are used to guide behavior and regulate synaptic plasticity. The dopamine responses have the same properties as the temporal difference learning algorithm used in TD-Gammon. Reinforcement learning was dismissed years ago as too weak a learner to handle the complexity of cognition. This belief needs to be re-evaluated in the light of the successes of TD-Gammon and learning algorithms in other areas of AI.

What would a biological theory of intelligence look like, based on internal brain states derived from experimental studies rather than introspection? I am optimistic that we are finally on the right track and that, before too long, an unexpected breakthrough will occur.

Editor-in Chief, Nature

Optimism Needs To Have Bite So That Pioneering Work In Early Cancer Detection Is Championed and Funded

Thinking of myself as a perennial optimist, I was surprised how challenging this question turned out to be. I realise that it's because my optimism is an attitude, rather than founded on careful estimation, and therefore bears little scrutiny. A corollary of this is that my optimism makes little difference to what I manage to achieve in a typical day apart from, importantly, getting out of bed in the morning.

Turning to a dictionary I confirm that optimism is either "a doctrine that this world is the best possible world" or" an inclination to put the most favorable construction upon actions and events or to anticipate the best possible outcome" (both from Webster). An attitude, therefore, of questionable robustness, and idiotically dangerous in some circumstances. But amongst several similar definitions in the Oxford English Dictionary I also find something less loaded: "Hopefulness and confidence about the future or the successful outcome of something". This permits optimism also to be rational.

And, to get serious, if I look for one aspect of life where both rationality and hope are essential, and where both seem to be paying off, it's in the battle against cancer. I focus my optimism on what currently looks like a peripheral flank in that battle, but could — and I think eventually will — become a more central focus of attention. We should of course be delighted by the few instances of drugs that hit a cancer target, even when the target wasn't the one originally intended. But just as important to me is the prospect of the use of proteins or other markers that permit the early detection and identification of cancer, hugely increasing the prospects of survival.

An early-detection cancer diagnostic needs to show low rates of false positive and false negative outcomes, should be able to distinguish tumours needing therapy from those that will do no harm, and should be acceptable in term of cost and practicality. This combination is a very tall order.

But hope arises from the unprecedented sensitivities of mass spectrometers, of single-molecule detection and of DNA amplification, not to mention the power of high-throughput biological screening. These bring us the almost unimaginable prospect of successful discrimination of cancer or — even better — pre-cancer marker-molecules within the bloodstream. The recent discovery in mice of genetic pathways underlying progression from precursor to advanced stages of ovarian cancer is another milestone to sustain optimism.

Although the US National Institutes of Health has made early detection a priority, it remains relatively underfunded in most cancer agencies. It has big challenges of clinical validation ahead of it. At the policy level, health planners and drug companies will need to be sure of its societal cost-effectiveness.

These considerations, and the fact that diagnostics are less scientifically sexy than 'cures', can deter researchers from pursuing early detection studies. So it's precisely now that optimism needs to have bite, so that pioneering work in early cancer detection is championed and funded despite the daunting obstacles ahead.

Physicist, University of Pennsylvania; Author: Faust In Copenhagen: A Struggle for the Soul of Physics

The Future Of String Theory

I am optimistic about the future of our thinking regarding string theory and the early universe. Until fairly recently I did not feel this way since string theory seemed to be a community unto itself, albeit a very talented one. Controversy has created an important dialogue and strife has erupted. I think this is all to the good. The basis for the disagreement goes back 30 years.

A unified understanding or so-called "theory of everything" has long been sought. The standard model that emerged in the 1970s provided a very significant step forward but left undetermined some 20 parameters: the values of the six quark and six lepton masses, various couplings etc. Initially it was hoped that string theory, aside from a unification of forces with quantum gravity, would determine the values of these parameters. That dream has not been realized.

A very significant group of theoretical physicists has now abandoned the dream. Pointing out that even string theory supports the view that an essentially infinite number of possibilities can be realized for a universe, the so-called landscape, they maintain that we live in one of these choices, the universe where the 20 or so parameters are fixed to be the values we observe. Other universes, with other values of the parameters, are continuously emerging and dying and still others live by our side. However we are limited in the possibility of observations and measurements to our own universe so that, in a deep sense, the 20 parameters that determine our world are completely arbitrary. We would not exist if they were not what they are, but there is no further understanding of their values.

A second group maintains that abandoning the dream that set elementary particle physics on its course a century ago, that of determining the forces and parameters of the sub-atomic world, is both premature and intellectually wrong. They maintain this is not science.

There is an intermediate position that, understandably, has not been embraced vigorously by either side. Perhaps very few of the 20 or so parameters, some of the mass scales, correspond to the universe we live in, but the others are set by string theory or some future theory we have not yet discovered. This could happen if e.g. the quark and lepton masses are calculable numbers that multiply a mass given by the particular universe we happen to live in. In this case both sides would be right. The numbers would be set by the theory and the mass scale by the choice of universe. I find the notion intriguing, but it may also be that both sides are wrong and some other stunning synthesis will emerge.

So why am I optimistic? Because I believe that controversy, with clearly drawn out opposing positions, galvanizes both sides to refine their opinions, creates excitement in the field for the participants, stimulates new ideas, attracts new thinkers to the fray and finally because it provides the public at large with an entrée into the world of science at the highest level, exhibiting for them heated arguments between great minds differing on questions vital to them. What could be more exciting?

Neuroscientist, Chairman, Board of Directors, Human Science Center and Department of Medical Psychology, Munich University, Germany; Author, Mindworks

"Monocausalitis" — Pessimistic Optimism To Overcome a Common Disease

Since the question is in "edge world" it has thought implicitly day and night in my brain what I could be optimistic about, (on the explicit level I had to do also some other things). Frankly speaking with respect to the "big questions" nothing came to the surface of my mind. Can I be optimistic as a scientist or as a citizen about such questions like: Can we come to sustainable peace? Will we really solve one day the question how our brain functions? Are we going to win the battle against diseases? Will it once be possible to be free from prejudices? Etc, etc. The answer is an emphatic "no". There is no reason to be optimistic about such "big questions".

On the other hand, I look at myself as an optimistic person; on a personal level I am optimistic about the future of my children and grandchildren, about the career of my doctoral students then and now, about the realization of some new research projects in the near future, about my health after some problems in the past; etc. etc. Thus, if everybody would be optimistic about personal matters (which empirically speaking is unfortunately not the case), possibly in the big picture there could be a reason for an optimistic attitude towards others and the world. Such optimism would be an expression of trust, not an expression of solving the problems of humankind.

On the other hand: It would be great if I could be optimistic about fighting successfully a disease of all humans, namely "monocausalitis". (But again: there is no reason to be optimistic; we better be realistic). Humans have the urge to explain everything in a monocausal way. We are always looking for one reason only. The philosophical sentence "nothing is without reason" (nihil est sine ratione) is usually misunderstood as "nothing is without one reason". Occam's razor, i.e. to look for the simplest solution of a problem is OK, as long as a solution is not too simple. We are apparently victims of our evolutionary heritage being satisfied only if one and only one cause for the solution of a problem is identified (or claimed).

In understanding biological processes, for instance brain processes, and how they control the "mindworks", we better free ourselves from this monocausal trap. I am not only referring to the problem of the many hidden variables which have to be accepted in any analysis of a biological process and which create the typical headache of an experimenter — it is never possible to control every variable —, but I am referring also to a structural problem. Biological phenomena can better be understood, if multicausality is accepted as a guiding principle. In particular, I would like to promote "complementarity as a generative principle". In quantum mechanics to the best of my knowledge complementarity is a descriptive principle; in biology it is a creative principle. Just one example: It does not make much sense to explain human behaviour only on a genetic basis; genetic and environmental information have to come together to form for instance the matrix of our brain. This and many other examples are so self-evident that it is even embarrassing to refer to them.

But still, if one looks at the expressed optimism that may save our world or that gives the final insight into mother nature's tricks we are confronted with monocausal solutions. Possibly, if we accept our evolutionary heritage, the burden of "monocausalitis", we may overcome this disease, at least partially.

Quantum Mechanical Engineer, MIT, Author, Programming the Universe

Once and Future Optimism

I am optimistic about the past. It's looking better and better every day. A couple of hundred years from now, when the Greenland and Antarctic ice caps have melted and sea levels have risen by two hundred feet, our genetically engineered descendants will be sitting by their ocean-front property in Nevada reminiscing about the high old times in those now submerged cities of New York, London, and Tokyo. From their perspective, the past is really going to look good.

I'm also optimistic about the future. It is well within our power as a species to avert the environmental catastrophe envisaged in the previous paragraph.  Prudent investment in carbon conserving technologies and economic strategies can postpone or prevent entirely the more extreme consequences of global warming. I am hopeful that policy makers will realize that relatively small sacrifices made voluntarily now, can prevent much larger, involuntary sacrifices later.

Let's be realistic: we human beings are addicted to damaging ourselves and others. When one rationale for conflict loses force, we seek out a new one, no matter how trivial, for prolonging the strife.  Nonetheless, we are capable of pulling back from the brink. During the cold war, the strategy pursued the United States and the Soviet Union was officially called MAD, or Mutually Assured Destruction: anyone who started a nuclear war was guaranteed to be annihilated themselves. While risky in the long run — if the radar confuses a flock of geese with an incoming missile, we're all dead — the strategy worked for long enough for our leaders to realize just how mad MAD was, and to begin to disarm.  We are currently on the brink of a major environmental catastrophe; but there is still time to pull back.

Even if global warming does flood most of the world's major cities, human beings will survive and adapt.  Just how they will adapt, we can't predict: but they will. Technology got us into this mess in the first place by providing the wherewithal for modern industrial society. I am optimistic that our descendants will develop technologies to cope with whatever mess we leave them. The technologies for survival into the twenty third century need not be high technologies: simple, low technologies of water and fuel conservation will suffice. If we're careful with our basic resources, there should be enough left over to keep on playing video games.

We need not even leave the world a mess. The key to using resources wisely is to distribute them fairly. If only because the global distribution of resources such as money and energy is currently so skewed, I am guardedly optimistic that our increasingly globalized society can make progress towards a world in which each human being has equal access to food, clean water, education, and political representation. This optimism is tempered by the acknowledgement that the world's 'haves' have little motivation to share the world's resources with its 'have nots' We are unaccustomed to thinking of democracy as a 'technology,' but that is what it is: a systematic arrangement of human beings into a social machine that functions better in many respects than the social machine of totalitarianism. The real technology that we currently require is not a more fuel-efficient SUV, but rather a political system that gives each human being on earth a voice in policy.

Finally, I am wildly optimistic about the future of scientific ideas. Wherever I travel in the world — first, second, or third — I meet young scientists whose ideas blow me away.  The internet distributes cutting edge scientific work much more widely and cheaply than ever before. As a result, the fundamental intellectual equality of human beings is asserting itself in a remarkable way: people are just as smart in Peru and Pakistan as they are in London and Los Angeles, and those people can now participate in scientific inquiry with far greater effectiveness than ever before.  Human beings are humanity's greatest resource, and when those humans start becoming scientists, watch out!

Psychologist, University of  California, Irvine

The Importance Of Innocence

"I don't think a lot of people realize how important innocence is to innocent people." These are haunting words spoken in the film "A Cry in the Dark"

The wrongful conviction of innocent people has been a serious problem in our society.  It is a problem that we are now becoming acutely aware of through the release of individuals who were shown to be actually innocent by DNA testing.  One happy consequence of these sad cases is the advent of a number of "innocence projects," typically operated out of law schools and dedicated to the freeing of those who were wrongfully convicted.

I wish I could say that I was optimistic that the problem of wrongful convictions will virtually disappear, sort of like polio. I can't. But I am optimistic that the problem of wrongful convictions will become smaller than it once was. Here's why. Just as the a plane crash leads to a microscopic analysis of what went wrong, so these cases of proven wrongful conviction have been dissected to determine what went wrong. The answer in the majority of cases is faulty memory. In a recent case, a rape victim misidentified a man as her attacker — a mistake of faulty memory. Readers can find out more about how these kinds of errors happen by reviewing the cases on the website of the Innocence Project.

The mistaken identification by the rape victim, and others similarly situated, comes as no surprise to scientists who have studied eyewitness memory. We have learned a great deal about what it is about our system that promotes these tragic errors. And finally our government is listening, a price paid by the hundreds individuals whose suffered through years of imprisonment and are now free. The Dept of Justice convened a committee to make recommendations to law enforcement for how witnesses and victims should be handled to preserve that valuable "memory evidence." Many states have recently adopted a package of reforms for how witnesses are interviewed and lineups are conducted. It has been a triumph of scientific discovery — a science that has taught us much about the workings of the human mind, and also has made a difference in the way our world works. But the science has only scratched the surface, and has layers upon layers to go.  During this period we will see more memory science, more reforms in the justice system, and we will have fewer errors.

As we invest in the science, and make more progress, society needs to keep one important idea in mind. Memory, like liberty, must be cherished, nourished, and protected. Without one, we can easily lose the other.

Physicist, MIT; Researcher, Precision Cosmology

We're Not Insignificant After All

When gazing up on a clear night, it's easy to feel insignificant. Since our earliest ancestors admired the stars, our human egos have suffered a series of blows. For starters, we're smaller than we thought. Eratosthenes showed that Earth was larger than millions of humans, and his Hellenic compatriots realized that the solar system was thousands of times larger still. Yet for all its grandeur, our Sun turned out to be merely one rather ordinary star among hundreds of billions in a galaxy that in turn is merely one of billions in our observable universe, the spherical region from which light has had time to reach us during the 14 billion years since our big bang. Then there are probably more (perhaps infinitely many) such regions. Our lives are small temporally as well as spatially: if this 14 billion year cosmic history were scaled to one year, then 100,000 years of human history would be 4 minutes and a 100 year life would be 0.2 seconds. Further deflating our hubris, we've learned that we're not that special either. Darwin taught us that we're animals, Freud taught us that we're irrational, machines now outpower us, and just last month, Deep Fritz outsmarted our Chess champion Vladimir Kramnik. Adding insult to injury, cosmologists have found that we're not even made out of the majority substance.

The more I learned about this, the less significant I felt. Yet in recent years, I've suddenly turned more optimistic about our cosmic significance. I've come to believe that advanced evolved life is very rare, yet has huge growth potential, making our place in space and time remarkably significant.

The nature of life and consciousness is of course a hotly debated subject. My guess is that these phenomena can exist much more generally that in the carbon-based examples we know of.

I believe that consciousness is, essentially, the way information feels when being processed. Since matter can be arranged to process information in numerous ways of vastly varying complexity, this implies a rich variety of levels and types of consciousness. The particular type of consciousness that we subjectively know is then a phenomenon that arises in certain highly complex physical systems that input, process, store and output information. Clearly, if atoms can be assembled to make humans, the laws of physics also permit the construction of vastly more advanced forms of sentient life. Yet such advanced beings can probably only come about in a two-step process: first intelligent beings evolve through natural selection, then they choose to pass on the torch of life by building more advanced consciousness that can further improve itself.

Unshackled by the limitations of our human bodies, such advanced life could rise up and eventually inhabit much of our observable universe. Science fiction writers, AI-aficionados and transhumanist thinkers have long explored this idea, and to me the question isn't if it can happen, but if it will happen.

My guess is that evolved life as advanced as ours is very rare. Our universe contains countless other solar systems, many of which are billions of years older than ours. Enrico Fermi pointed out that if advanced civilizations have evolved in many of them, then some have a vast head start on us — so where are they? I don't buy the explanation that they're all choosing to keep a low profile: natural selection operates on all scales, and as soon as one life form adopts expansionism (sending off rogue self-replicating interstellar nanoprobes, say), others can't afford to ignore it. My personal guess is that we're the only life form in our entire observable universe that has advanced to the point of building telescopes, so let's explore that hypothesis. It was the cosmic vastness that made me feel insignificant to start with. Yet those galaxies are visible and beautiful to us — and only us. It is only we who give them any meaning, making our small planet the most significant place in our observable universe.

Moreover, this brief century of ours is arguably the most significant one in the history of our universe: the one when its meaningful future gets decided. We'll have the technology to either self-destruct or to seed our cosmos with life. The situation is so unstable that I doubt that we can dwell at this fork in the road for more than another century. If we end up going the life route rather than the death route, then in a distant future, our cosmos will be teeming with life that all traces back to what we do here and now. I have no idea how we'll be thought of, but I'm sure that we won't be remembered as insignificant.

Psychologist, Autism Research Centre, Cambridge University; Author, The Essential Difference

The Rise of Autism and The Digital Age

Whichever country I travel to, attending conferences on the subject of autism, I hear the same story: autism is on the increase.
Thus in 1978 the rate of autism was 4 in 10,000 children, but today (according to a Lancet article in 2006) it is 1%. No one quite knows what this increase is due to, though conservatively it is put down to better recognition, better services, and broadening the diagnostic category to include milder cases such as Asperger Syndrome. It is neither proven nor disproven that the increase might reflect other factors, such as genetic change or some environmental (e.g., hormonal) change. And for scientists to answer the question of what is driving this increase will require imaginative research comparing historical as well as cross-cultural data.

Some may throw up their hands at this increase in autism and feel despair and pessimism. They may feel that the future is bleak for all of these newly diagnosed cases of autism. But I remain optimistic that for a good proportion of them, it has never been a better time to have autism.

Why? Because there is a remarkably good fit between the autistic mind and the digital age. The digital revolution brought us computers, but this age is remarkably recent. It was only in 1953 that IBM produced their first computer, but a mere 54 years later many children now have their own computer.

Computers operate on the basis of extreme precision, and so does the autistic mind. Computers deal in black and white binary code, and so does the autistic mind. Computers follow rules, and so does the autistic mind. Computers are systems, and the autistic mind is the ultimate systemizer. The autistic mind is only interested in data that is predictable and lawful. The inherently ambiguous and unpredictable world of people and emotions is a turn off for someone with autism, but a rapid series of clicks of the mouse that leads to the same result every time that sequence is performed is reassuringly attractive. Many children with autism develop an intuitive understanding of computers in the same way that other children develop an intuitive understanding of people.

So, why am I optimistic? For this new generation of children with autism, I anticipate that many of them will find ways to blossom, using their skills with digital technology to find employment, to find friends, and in some cases to innovate. When I think back to the destiny of children with autism some 50 years ago, I imagine there were relatively fewer opportunities for such children. When I think of today's generation of children with autism, I do not despair. True, many of them will have a rocky time during their school years, whilst their peer group shuns them because they cannot socialize easily. But by adulthood, a good proportion of these individuals will have not only found a niche in the digital world, but will be exploiting that niche in ways that may bring economic security, respect from their peer group, and make the individual feel valued for the contribution they are able to make.

Of course, such opportunities may only be relevant to those individuals with autism who have language and otherwise normal intelligence, but this is no trivial subgroup. For those more severely affected, by language delay and learning difficulties, the digital age may offer less. Though even for this subgroup I remain optimistic that new computer-based teaching methods will have an appeal that can penetrate the wall that separates autism from the social world. The autistic mind — at any level of IQ — latches onto those aspects of the environment that provide predictability, and it is through such channels that we can reach in to help.

< previous

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >