| Index | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15




2007

"WHAT ARE YOU OPTIMISTIC ABOUT?"


CONTRIBUTORS
William Calvin
Freeman Dyson
James Geary
David Gelernter
Jonathan Haidt
Kai Krause
Andrian Kreye
Randolph Nesse
Lisa Randall
Charles Seife

Back to Index Page



LISA RANDALL
Physicist, Harvard University; Author, Warped Passages


People Will Increasingly Value Truth (Over Truthiness)

Optimism is an "ism" like any other. People reading these pages should recognize the responses as the hopeful beliefs that they are. With this caveat, I'm optimistic that people will increasingly value truth (over truthiness). After recent digressions into beliefs and images dominating current thought, I'm anticipating that society will increasingly recognize and understand the value of knowledge. People will want to make their own critical judgments, know more facts, and stop deferring to questionable authorities or visual media for their education. I don't necessarily think everyone will do so. But I'm optimistic that the ones who do won't remain a silent minority.

Part of my optimism stems from my experiences talking and writing about the future of particle physics to the public and the surge of interest I've found when people realize how much they can learn and understand. All of us in the particle physics community are eagerly awaiting the Large Hadron Collider (LHC), a proton-proton collider being built in Switzerland that will turn on in 2007 and begin its real operation in 2008. I'm optimistic (with calculations that support my optimism) that this machine will tell us about the nature of mass and explain to us the weakness of gravity relative to the other known elementary particle forces. I'm optimistic that we'll learn something truly new and exciting about the fundamental nature of matter and our world-maybe something as exciting as extra dimensions of space—or perhaps something no one has even thought about yet. Whatever the results will be, the LHC gives reason to be optimistic.


FREEMAN DYSON
Physicist, Institute of Advanced Study, Author, Disturbing the Universe

HAR1 ( Human Accelerated Region 1) As a New Tool Leading Us Toward a Deep Understanding of Human Nature

I am generally optimistic because our human heritage seems to have equipped us very well for dealing with challenges, from ice-ages and cave-bears to diseases and over-population. The whole species did cooperate to eliminate small-pox, and the women of Mexico did reduce their average family size from seven to two and a half in fifty years. Science has helped us to understand challenges and also to defeat them.

I am especially optimistic just now because of a seminal discovery that was made recently by comparing genomes of different species. David Haussler and his colleagues at UC Santa Cruz discovered a small patch of DNA which they call HAR1, short for Human Accelerated Region 1. This patch appears to be strictly conserved in the genomes of mouse, rat, chicken and chimpanzee, which means that it must have been performing an essential function that was unchanged for about three hundred million years from the last common ancestor of birds and mammals until today.

But the same patch appears grossly modified with eighteen mutations in the human genome, which means that it must have changed its function in the last six million years from the common ancestor of chimps and humans to modern humans. Somehow, that little patch of DNA expresses an essential difference between humans and other mammals. We know two other significant facts about HAR1. First, it does not code for a protein but codes for RNA. Second, the RNA for which it codes is active in the cortex of the human embryonic brain during the second trimester of pregnancy. It is likely that the rapid evolution of HAR1 has something to do with the rapid evolution of the human brain during the last six million years.

I am optimistic because I see the discovery of HAR1 as a seminal event in the history of science, marking the beginning of a new understanding of human evolution and human nature. I see it as a big step toward the fulfillment of the dream described in 1929 by Desmond Bernal, one of the pioneers of molecular biology, in his little book, "The World, the Flesh and the Devil: An Enquiry into the Future of the Three Enemies of the Rational Soul". Bernal saw science as our best tool for defeating the three enemies. The World means floods and famines and climate changes. The Flesh means diseases and senile infirmities. The Devil means the dark irrational passions that lead otherwise rational beings into strife and destruction. I am optimistic because I see HAR1 as a new tool leading us toward a deep understanding of human nature and toward the ultimate defeat of our last enemy.


RANDOLPH M. NESSE
Psychiatrist, University of Michigan; Coauthor, Why We Get Sick

We Will Find New Ways To Block Pessimism

I am optimistic that we will soon find effective new methods for blocking pessimism. We are well on the way with antidepressants. Side-effects remain a major problem, and some people do not respond, but progress has been rapid.  Findings from neuroscience and genetics will provide the foundation, but the engine that will drive new developments is the huge profit potential from agents that relieve negative emotions. The anxiety and depression drug market already tops 20 billion dollars per year just in the USA.  The promise of profits will yield new agents. They will relieve much suffering. 

I am pessimistic, however, about our ability to use them wisely. Pessimism is not a problem, it is a useful emotional state. When the boat overturns a mile out to sea, optimism about one's ability to swim to shore is deadly.  When a hurricane is approaching, optimism is fine nine times out of ten, then comes Katrina. When deciding whether to invade a foreign country, optimism about receiving a warm welcome can result in a catastrophe that changes the whole course of history for the worse.  

The tendency to think optimism is superior to pessimism is a deep-rooted illusion.  Optimism is useful in propitious situations. Pessimism is useful in dangerous situations.  For the fortunate, life now is vastly safer and more secure than it was, so pessimism is less necessary.  But unintended consequences of blocking pessimism are likely.  Already thousands of employees are subjected to motivational exercises to foster positive thinking.  What will happen when we all can choose to feel positive most of the time?  The world will be better in many ways, and worse in others that are hard to predict. 

ANDRIAN KREYE
Feuilleton (Arts & Ideas) Editor, Sueddeutsche Zeitung, Munich

We Will Overcome Agnotology (The Cultural Production Of Ignorance)

Have you heard this one by Conan O'Brien: Yesterday, a group of scientists warned that because of global warming, sea levels will rise so much that parts of New Jersey will be under water. The bad news? Parts of New Jersey won't be under water. Or this one by Jay Leno: Heating bills this winter are the highest they've been in five years, but the government has a plan to combat rising bills. It's called global warming. Not their best jokes, but this year global warming became one of the staple topics of late night monologues.

This makes me very optimistic, because jokes are hard evidence of sociological currents. A joke can only work on national TV, if the majority of viewers is able to understand the cultural reference in a split-second and if a general consensus allows the joke to take sides. If Leno makes fun of global warming—great. It's now part of the collective subconscious. It means the general public made up its mind on the subject.

This is quite a change from just two and a half years ago. In the summer of 2004 Hollywood director Roland Emmerich released his disaster movie, The Day After Tomorrow. He openly said he wanted to use his film to combat the widespread ignorance about climate change in the US. To emphasize how serious he thought the subject, he invited numerous scientists and activists to make the point that very ignorance about global warming might be one of the greatest obstacles for a solution.

His film was written accordingly. To bring the audience up to speed, large parts of the first act were spent on Dennis Quaid as a paleoclimatologist, who did a lot of reciting of scientific facts and fictions, not unlike the endless science dialogues between Spock and Kirk, which had to set up the outer worldly realities in Star Trek.

Emmerich’s disaster might have bombed at the box office, but it did trigger a chain reaction. Media attention to climate change rose. TV features about endangered polar bears created emotional impact. Sales of hybrid cars went up. Seven Northeastern states have signed the Kyoto protocol, an initiative followed by more than 300 cities. Several Hollywood stars like Brad Pitt, Keanu Reeves and Leonardo di Caprio currently work on documentaries about global warming, which will raise the topic's profile for an audience normally not interested in scientific matters even further. Now even notoriously fatalistic Christian fundamentalists see earth as a gift from God mankind has to protect.

This is of course not just about the power of pop culture. It's not even just about climate change. This is about a society's choice between listening to science and falling prey to what Stanford science historian Robert N. Proctor calls agnotology (the cultural production of ignorance), Production has been booming. The editing of NASA reports about climate change. The political sanctification of coma patient Terri Schiavo. The introduction of intelligent design into curriculae. All those efforts have all just served the purpose of creating a widespread will to ignore facts and reason.

If a nation purposely kept in the dark about an imminent danger for so long manages to overcome public inertia and become acutely aware of a complex issue like global warming in the span of two years, it means that the power of reason is ultimately able to overcome the forces of ignorance driven by economic interests and religious dogma. This is a universally optimistic outlook on history. And not to forget that this ability to swiftly react as a collective is still most important in the US. The number of leading research facilities, the economic power, the pioneering spirit and entrepreneurial verve put the US in a leadership position that can affect not just global affairs, but down the line maybe even the weather.


DAVID GELERNTER
Computer Scientist, Yale University; Chief Scientist, Mirror Worlds Technologies; Author, Drawing Life

The Future of Software

I am optimistic about the future of software, because more and more people are coming out of the closet every month — admitting in public that they hate their computers.

Within the last month I've heard three people shouting (or muttering) curses at their machines. One was a bona fide software virtuoso! These particular three were ticked off about (1) an airline website that was so badly designed it was useless, (2) a commercial web-site-building tool (bought for real money) that made it nearly impossible to build simple structures and (3) a home PC that, despite reasonably sophisticated software counter-measures, was so junked-up with viruses that starting a word processor took five minutes.

The file systems and desktop and spreadsheets, the word processors and mailers and database programs we rely on are vintage 1984 or older. They're as obsolete as a 1984 PC. When I first described the "empty computer" model in the early '90s, people thought I was crazy. Many still do—but fewer each year (and I guess that's progress). There was a larger jump in admitted cases of computer- and software-hatred in '06 than in any previous year I remember.

Technologists who blandly assume that hardware will (somehow) keep getting better while software stays frozen in time are looking wronger every month. In the empty-computer world of the near future, your information assets have all been bundled-up, encrypted and launched into geosynchronous orbit in the Cybersphere; computers are interchangeable devices for tuning in information. (If computers are so cheap, why does everyone need to carry one around with him? We don't make you carry a desk and chairs around with you; we can afford to provide chairs and flat surfaces wherever you need them.)

In the empty computer world it will take five minutes to upgrade to a new machine (throw the old one out, plug the new one in—your information stays in orbit where it's always been); comfortable large-screen public computers will be available all over the place. And instead of expanding into a higher-and-higher-entropy mess, the Web will implode into a "blue hole": a single high-energy information beam that holds all the world's digital assets.

Gelernter's Law: the computer industry revolutionizes itself at least once a decade. We're nearly due for the next revolution.


JONATHAN HAIDT
Psychologist, University of Virginia

The Baby Boomers Will Soon Retire

I am optimistic about the future of social science research because the influence of the baby boom generation on the culture and agenda of the social sciences will soon decrease. Don't get me wrong, many of my best friends are boomers, and technically I'm one too (born in 1963). I am grateful for the freedom and justice that the activists of the 1960s and 1970s helped bring to the United States. But if there is a sensitive period for acquiring a moral and political orientation, it is the late teens and early 20s, and most of those whose sensitive periods included the Vietnam war and the struggles for civil rights seem to have been permanently marked by those times. Many young people who entered Ph.D. programs in the social sciences during the 1970s did so with the hope of using their research to reduce oppression and inequality. This moral imprinting of a generation of researchers may have had a few detrimental effects on the (otherwise excellent) science they produced. Here are two:

1) Moralistic antinativism. The deep and politicized antipathy to 1970s sociobiology produced a generation of social scientists wary of nativism in general and of evolutionary thinking in particular. Nobody these days admits to believing that the mind is a blank slate at birth, but in practice I have noticed that social scientists older than me generally begin with a social learning explanation of everything (especially sex differences), and then act as though it is "conservative" (scientifically) or "liberal" (politically) to stick with social learning unless the evidence against it is overwhelming, p<.05, which it rarely is. But shouldn't we use p<.5 here? Shouldn't we always let nativist and empiricist explanations both have a go at each question and then pick the one that has the better fit, overall, with the evidence? I look forward to the day when most social scientists learned about the astonishing findings of twin studies in their twenties, and very few know who Stephen Jay Gould was. 

2) Moral Conformity Pressure. Imagine an industry in which 90% of the people are men, male values and maleness are extolled publicly while feminine values are ridiculed, and men routinely make jokes, publicly and privately, about how dumb women are, even when women are present. Sounds like a definition of hostile climate” run wild? Now replace the words male” and female” with liberal” and conservative,” and we have a pretty good description of my field —social psychology—and, I suspect, many other areas of the social sciences. I have no particular fondness for conservatives. But I do have a need for them. I study morality, and I have found that conservative ideas (about authority, respect, order, loyalty, purity, and sanctity) illuminate vast territories of moral psychology, territories that have hardly been noticed by psychologists who define morality as consisting exclusively of matters of harm, rights, and justice. If social psychology had been a morally diverse field, we would have done a much better job of studying the full expanse of human morality, and we'd be in a much better position right now to understand the morality of radical Islam.

Will younger social scientists be more morally diverse than the baby boom generation? Maybe not. But if they make it through their sensitive periods without seeing themselves as part of a revolution, they just might be more open to diverse ideas about the origins of mind, the scope of morals, and the workings of society.


CHARLES SEIFE
Professor of Journalism, New York University; formerly journalist, Science magazine; Author, Zero: The Biography Of A Dangerous Idea

Pessimistic In Its Optimism

It's easy to be a pessimist. These are dark times for physics in the United States. One by one, national laboratories are shuttering their high-energy physics experiments; within a few years there won't be a single U.S. accelerator exploring the energy frontier. As NASA squanders billions and billions of dollars on the International Space Station and on lunar exploration, it is tearing the guts out of its other programs—the ones that provide actual scientific discoveries.

Physics is a transplant to the U.S. Before 1900, you could count the number of great American physicists on one hand. A few decades later, the U.S. had become the premier power in theoretical and experimental physics, thanks to refugees from Hungary, from Austria, from Germany, from Italy, from Denmark, and from all across Europe. The transplant took root and flourished.

Even though the future is dimming for American physics, there is room for optimism—the prospects for major discoveries are the brightest they've been in years. We are in the midst of a cosmological revolution; we are beginning to understand the physical laws that governed the early universe. Before the end of the decade, European experiments, such as the Planck satellite and the Large Hadron Collider at CERN will allow physicists to delve deeper than ever before into the story of the infant cosmos. While physics in the United States is withering, there will be fertile soil where a transplant can take root once again.


JAMES GEARY
Former Europe editor, Time Magazine; Author, The World in a Phrase

PCT Will Allow People To Take Individual Action to Tackle a Global Problem

I am optimistic that 'purchasing power' can be brought to bear on the problem of climate change. For too long climate change has been one of those huge, complex, difficult issues people felt they could safely ignore. The science was complicated and there were persuasive voices arguing that it was all a myth anyway. Plus, climate change was just too abstract to get worked up about. 'Sure Bangladesh and the Netherlands might be aquatic theme parks in a hundred years, but yesterday my job was outsourced to India. Which problem is more urgent?' Now, few people seriously dispute the science, and climate change is having tangible effects on people's lifestyles. I may not care what happens to island nations and fragile ecosystems on the other side of the planet, but I'll be damned if my annual skiing vacation is going to be ruined for lack of snow.

People are more informed and concerned, but they still feel like there's not much they can do. A survey carried out earlier this year by the U.K. Department of Environment, Food and Rural Affairs (DEFRA) found that 70% of respondents said they believed their lifestyles had an impact on climate change; only 40% of those people said they thought they could do something to change that. There are two basic motivations for human beings to alter their behavior: fear and self-interest. I'm not optimistic that will change. I am optimistic, however, that people are now genuinely scared by climate change and that an appeal can be made to their self-interest in the form of Personal Carbon Trading (PCT).

The European Union's Emission Trading Scheme (ETS), launched in 2005, has been a qualified success. The system allocates a set of emissions credits (representing the amount of carbon a firm is permitted to produce) to industrial installations. There is an effort now under way to extend the scheme to the airline industry. If a company doesn't use all of its credits, it can sell them to other companies that have exceeded their own quotas. The idea is to make it expensive for corporations to emit the greenhouse gases that cause climate change while at the same time making it financially attractive for them to limit those emissions. Several organizations are now experimenting with applying this idea to individuals.

PCT would be the economic equivalent of microgeneration; instead of every person generating his or her own power through solar panels or wind turbines, each person would generate his or her own carbon portfolio. PCT would work on the same principles as the E.U. system, but individuals instead of industries would be allotted carbon credits, which they could sell, trade or use as they see fit. PCT could also have potential social welfare benefits: Children could be given carbon credits at birth, which would then (hopefully) increase in value, so that by the time they're adults they could cash some of them in to fund education, professional training or a first home purchase. PCT would allow people to take individual action to tackle a global problem, thus easing the existential angst so many of us feel when confronting something this immense. We could help save the planet and make money in the process! What's not optimistic about that?


WILLIAM CALVIN
Professor, The University of Washington School of Medicine; Author, A Brain For All Seasons

The Climate Optimist

Mention global warming at a seasonal social gathering and see what happens, now that skepticism has turned into concern and sorrow. They will assume that you're a pessimist about our prospects. "Not really," I protest. That earns me a quizzical look.

"Wait a minute," she says. "If you're an optimist, why do you look so worried?"

"So you think it's easy, being an optimist?"

Many scientists look worried these days. We've had a steady diet of bad news coming from climate scientists and biologists. To become even a guarded optimist, you have to think hard.

First, I reflected, the history of science and medicine shows that, once you mechanistically understand what's what, you can approach all sorts of seemingly unsolvable problems. I'm optimistic that we will learn how to stabilize climate.

Unfortunately the window of opportunity is closing. Fifty years have now passed since the first unequivocal scientific warnings of an insulating blanket of CO2 forming around the planet. Politicians apparently decided to wait until something big went wrong.

It has. We have already entered the period of consequences. Climate scientists have long been worried about their children's future. Now they are also worried about their own.

Our Faustian bargain over fossil fuels has come due. Dr. Faustus had 24 years of party-now, pay-later—and indeed, it's exactly 24 years since Ronald Reagan axed the U.S. budget for exploring alternative fuels. This led to doubling our use of cheap coal, the worst of the fossil fuels. They're planning, under business as usual, to re-double coal burning by 2030—even though we can now see the high cost of low price.

The devil's helpers may not have come to take us away, but killer heat waves have started, along with some major complications from global warming. We're already seeing droughts that just won't quit. Deserts keep expanding. Oceans keep acidifying. Greenland keeps melting. Dwindling resources keep triggering genocidal wars with neighbors (think Darfur). Extreme weather keeps trashing the place.

All of them will get worse before they get better.

Worse, tipping points can lead to irreversible demolition derbies. Should another big El Niño occur and last twice as long as in 1983 or 1998, the profound drought could burn down the rain forests in Southeast Asia and the Amazon—and half of all species could go extinct, just within a year or two.

Time has become so short that we must turn around the CO2 situation within a decade to avoid saddling our children with the irreversible consequences of a runaway warming. That means not waiting for a better deal on some post-Kyoto treaty. It means immediately scaling up technologies that we know will work, not waiting for something better that could take decades to debug.

This isn't optional. It is something that we simply have to do. The time for talk is past.

"I see why you're worried," she says. "But what's your optimistic scenario for dealing with this fossil fuel fiasco?"

For starters, I think it likely that the leaders of the major religious groups will soon come to see climate change as a serious failure of stewardship. And once they see our present fossil fuel use as a deeply immoral imposition on other people and unborn generations, their arguments will trump the talk-endlessly-to-buy-time business objections— just as such moral arguments did when ending slavery in the 19th century.

Second, the developed nations are fully capable of kick-starting our response to global warming with present technology—enough to achieve, within ten years, a substantial reduction in their own fossil fuel uses. How?

Wind farmers will prosper as pastures grow modern windmills to keep the cows company.

Giant parking lots, already denuded of trees, are perfect places for acres of solar paneling. Drivers will love the shaded parking spaces they create.

The Carbon Tax will replace most of those deducted from paychecks and create a big wave of retrofitting homes and businesses.

Big brightly lit grocery stores with giant parking lots will compete poorly with warehouses that deliver web and phone orders within the hour, like pizza. Smaller neighborhood grocery stores will once again do a big walk-in business and they will compete with the warehouses by offering "green bicycle" delivery.

High-speed toll gates will become the norm on commuter highways. (Yes, I know, but remember that the paycheck was just enriched by eliminating withholding for income tax.)

Speed limits will be lowered to 50 mph (80 kmh) for fuel efficiency and, as in 1973, drivers will marvel at how smoothly the traffic flows. Double taxes will apply to vehicles with worse-than-average fossil fuel consumption, reducing the number of oversized vehicles with poor streamlining. Hybrids and all-electric cars will begin to dominate new car sales.

A firm, fast schedule will be established for retiring or retrofitting existing coal plants. My bet is that adding nuclear power plants—France gets 78% of its electricity that way, New Jersey 52%—will prove safer, cheaper, and faster than fixing coal.

On the quarter-century time scale, let us assume that the new rapid transit systems will reduce car commuting by half. The transition to electric and hydrogen vehicles will shift transportation's energy demands to greener sources, including biofuels, geothermal, tidal, and wave generation.

The highly efficient binding energy extractors (BEEs, the fourth-generation nuclear power plants) will be running on the spent fuel of the earlier generations.

The low-loss DC transmission lines will allow, via cables under the Bering Strait, solar-generated electricity to flow from the bright side to the dark side of the earth.

And in this 25-year time frame, we ought to see some important new technology making a difference, not just improvements in what we already use. For example, we might encourage rapid adaptation of the whale's favorite food, the tiny phytoplankton which provide half of the oxygen we breathe as they separate the C from the CO2.

Since the shell-forming plankton sink to the ocean bottom when they die, their carbon is taken out of circulation for millions of years. Forests can burn down, releasing their stored carbon in a week, but limestone is forever. If shell-forming plankton could thrive in warmer waters with some selective breeding or a genetic tweak, their numbers might double and start taking our excess CO2 out of circulation.

But even if we invent—and debug—such things tomorrow, it can take several decades before an invention makes a dent in our urgent problem. And all this assumes no bad surprises, such as the next supersized El Niño killing off the Amazon and, once we lack all those trees, increasing the rate of warming by half.

By mid-century, let us suppose that we have begun extracting more CO2 from the atmosphere than we add.

This will only happen if the technology of the developed world has become good enough to compensate for what's still going on in the overstressed nations that are too disorganized to get their energy act together.

When CO2 levels fall enough to counter the delayed warming from past excesses, we will begin to see a reversal of droughts and violent weather— though the rise in sea level will likely continue, a reminder to future generations of our 20th-century Faustian bargain.

As Samuel Johnson said in 1777, "when a man knows he is to be hanged in a fortnight, it concentrates his mind wonderfully."

We need to turn on a dime—by which I mean, close to what we saw in the United States after the bombing of Pearl Harbor.

From a standing start in late 1941, the automakers converted—in a matter of months, not years—more than 1,000 automobile plants across thirty-one states... In one year, General Motors developed, tooled, and completely built from scratch 1,000 Avenger and 1,000 Wildcat aircraft... GM also produced the amphibious 'duck'—a watertight steel hull enclosing a GM six-wheel, 2.5 ton truck that was adaptable to land or water. GM's duck `was designed, tested, built, and off the line in ninety days'... Ford turned out one B-24 [a bomber] every 63 minutes....
— Jack Doyle, Taken for a Ride, 2000

Now there's a source of optimism: we did it before. Indeed, GM currently needs a new purpose in life (and I'd suggest repurposing the manned space program as well). All of that talent is badly needed.

With great challenges come great opportunities and I'm an optimist about our ability to respond with innovation. Countries that innovate early will have an economic edge over the laggards.

Our present civilization is like a magnificent cathedral, back before flying buttresses were retrofitted to stabilize the walls. Civilization now needs a retrofit for stabilizing its foundations. It will be a large undertaking, not unlike those that once went into building pyramids and cathedrals. I'm optimistic that the younger generation can create a better civilization during the major makeover—provided that those currently in the leadership can stop this runaway coal train, real fast.

Climate change is a challenge to the scientists but I suspect that the political leadership has the harder task, given how difficult it is to make people aware of what must be done and get them moving in time. It's going to be like herding stray cats, and the political leaders who can do it will be remembered as the same kind of geniuses who pulled off the American Revolution.


KAI KRAUSE
Software and Design Pioneer.

Neo-Contentism

It's a turquoise sky on a December afternoon. Out of the window I see the Rhein river meandering far below me, the last rays of sunlight shimmering on the surface, a storm is passing through from France heading towards Cologne. To check on it, I push a button, the screen fills with dozens of little widgets: I have a quick look at the realtime weather animation loop for the last 6 hours and can see that most of it will pass to the North.

A little bell sound, ah, an sms text message coming in from my daughter in London: her final cake worked well! I smile, bet she is happy now, on the way to her diploma in Patisserie at the Cordon Bleu cooking school. I flip open the cell phone Qwerty keyboard and type a smiley with hugs at her with both thumbs.

Then a window pops up on the very large screen: it's my old pal Ben, who happens to be online in Santa Barbara. In the Chat window he sends me an image from NASA: the newly found evidence for water, flowing down the sides of a crater on Mars. He also pastes in a link to the NASA site: the super resolution files. I download a handful and watch a couple hundred megabytes come down.

That's a case for the other machine: I drag the images over to the T221, 9 million pixels at 200dpi, what a wonder to behold. Water on Mars! We had just seen the HD documentary by the BBC on the amazing tenacity of life, the Mariani trench 11,000m below the surface, they keeping finding life in surprising complexity in the most unlikely places. I smile again: In my lifetime there may be irrefutable evidence of life outside of Earth.

Ben suggests a Go game, but at the same time there is now a window with Matt and Mike: we have been working on cool new software for quite a while - except there is one twist: they happen to live outside of Auckland, in the forests of northern New Zealand, more like the antipode of my place in Europe. But it works well: the new version is ready, Matt sends it encrypted while the three of us chat together, with annotated screenshots of 'bugs'. We could switch to VoiP or live camera, but it's helpful to have the written record as well.

Yanking the mouse to a corner: the widgets re-appear and a few world-time clocks tell me that it's 8 am where they are, wow, up early! I glance at some headlines on slashdot, digg, heise, arstechnica, perlentaucher. I see the NPR news headlines, the Tate Gallery rss shows an exhibition of Holbein, sweet... didn't I just read about him on edge.org? Where is that Tate St. Ives anyway? I switch to Google Earth and swoop down on the UK from space.

Dragging the mouse to the other corner: the screen fills with tiny colorful images, probably 100 of them, all the files currently open shown in miniature. I find the NASA shots and drag them over to the side into a folder for science stuff. Quite a collection of bits and pieces there, years of collecting them. Attached for a few hundred bucks is a terabyte worth of muse and ponder. Dozens of reference books, the Encyclopedia Brittanica, what a dream.

Come to think of it, I should send that to the other two kids. My boys are 15 and 11 now, a voracious age. I ping the younger one, ask if he has time for Dad just now. I send him a sweet physics simulation LineRider and the lovely SandGame particle system applet, he will have fun with that. In the meantime a quick scan at the news for a good description of the water on Mars events. New Scientist has a nice writeup, Wired a good story with side by side comparisons. I print the page into a pdf file, drag it over to him. The older one pops up, has some new jokes for me. He loves to read them and to create his own. I tell him to google "2.3 trillion missing" and watch the YouTube video. Ponder a little.

They will come over here soon. Sweet, we can go to the mediaeval Christmas market. Drive down to Innsbruck for real snow. I should get a few movies for us to watch. Are they ready for "Aguirre"? Maybe "2001" ? Christopher sent "5th Element" on BluRay. Perhaps "Amelie", next summer we go to Paris. Now that piano is in my ear... A quick change to the music store, a search for Yann Tiersen, there is almost everything he ever made. A few clicks, a few bucks and the soundtrack is here. I burn a CD for the trip. Click in Wikipedia, what has he been up to? Duet with Jane Birkin and Cocteau Twins, neat, missed that!

My much-better-half comes over for a hug: time to go, we have lots of errands before the holidays. She flies across the autobahn past 220 km/h with a grin, the navigator detects a traffic jam ahead, rerouting us across the river, just a 10 minute detour, not bad. Could get some gas though: all the nearest gas stations are shown, I click on one, it takes us there. Pause the favorite song while I go in, grab a couple magazines and newspapers. No cash, I slide the plastic through the slit and leave. She already entered the address we want to go to first, tricky access through the maze of one-way streets around the old town area. Minus 3 outside, we snuggle in the heated seats, on the screen the closest Thai restaurants ...


Obviously I could go on ad nauseum here, but this is not a description of technology per se. The emphasis is on quality of life. On the benefits of tools, the liberating freedom. My real point: Humans are feeble. We forget. We have become numb to all the wonder.

To see the weather in pictures from space, animated over time, what a wonder that would have been to the Wright brothers...or James Cook, Vasco da Gama, Marco Polo..? To be in realtime communication with your family, what a wonder that would have been for  Bach who had 20 children (half of which died in infancy. I didn't even touch on the advances in health and medicine, of course).

To see cellphones and billions of sms would have boggled Tesla, Edison, Bell, Reis, Meucci.  To send a probe to other planets, and personally own the resulting images in startling clarity, what a dream that would have been for a Huygens, Mercator, Kepler, Galileo...

To collaborate on your work with colleagues on the other side of the world as if they are in the next room, how liberating is that freedom! To travel safely, quickly, effortlessly, with an all-knowing friend guiding you, what would any of them say to that? Researchers added up that Goethe traveled over 37.000 km in his lifetime, in more than 180 excursions but: on foot, horseback and carriages! Add a zero for a guy like Humboldt. They would have marveled — or cried — at our options to go anywhere, see anything, meet anyone.

To be able to see all the works of all the great artists, and keep a copy to then examine  up-close, at your leisure, in your own home — to listen to the music of any composer, new or old...what an absolute dream in itself that would have been for any and all of them! Consider you hear about 'that new Beethoven symphony': you would have to physically travel to a performance somewhere, and even then you could only hear that one, not any of the others, and: you would likely forget it, since you would hardly get a chance to hear it again to build a long term memory of it. Never mind mentioning movies here, or radio, television, let alone the web.

To get to research done anywhere, by anyone, to share the findings and writings, duplicate them instantly, store them and save them, catalog them and index them, searchable among billions, in seconds...to have your own copy of the books, your own Brittanica, how blissful that would have made Jules Verne with his 20.000 wooden boxes of index card snippets, or any of the other universally interested scientists like Athanasius Kircher or T.H. Huxley, Newton or Leibniz. And what's more, your own Sphynx, divining nearly any answer to any question. find any fact, in minutes if not seconds, an advisor like no Sun-king or Emperor, Kaiser or Pharaoh could ever buy with all the gold in their empires.... that's Google now in a smartphone in the pockets of teenagers.

Surely any of the ancient Greeks would spontaneously combust at the sight of almost any household object on any shelf in any department store. And yes, I realize, that still won't make us automatically and constantly happy, duhh.  And is there a list of evils and downsides that came with all those advances? You bet. I could switch hats and drown in drivel about all that...

But the question stands: what am I optimistic about? And I think it simply bears repeating:

Countless scientists over the millennia dedicated their lives to discoveries, to solutions, to inventions and explanations. They had visions of bettering the fate of humanity, of seeking truths and finding answers, and they paid for it with enormous efforts and in many cases with their life.  Their combined body of bodies stands in front of us, in awe, and... in tears. We have achieved almost all their dreams, we have freedom in every sense like never before in history and: we are ungrateful bastards about it!

Let us just be content again. Plain happy. Period. I am calling for a New Contentism.

From that vantage point, looking at the incredible options and tools for all of us, is there reason to be optimistic for the future that we could make good use of them? You bet!


< previous

| Index | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2007 by
Edge Foundation, Inc
All Rights Reserved.
|Top|