| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >




2007

"WHAT ARE YOU OPTIMISTIC ABOUT?"


CONTRIBUTORS
Chris Anderson
Gregory Benford
David Berreby
David Dalrymple
Roger Highfield
Nicholas Humphrey
Rudy Rucker
Steven Schneider
Karl Sabbagh
Timothy Taylor

Back to Index Page




DAVID DALRYMPLE
Student, MIT's Center for Bits and Atoms; Researcher, Internet 0, Fab Lab Thinner Clients for South Africa, Conformal Computing

Technology in Education

There's a lot in science and technology to be optimistic about, as evidenced by the numerous responses to the question, but I'll focus on the role of technology in education.

Before I entered college, I had never been enrolled in a school. Some of my education was provided by books, magazines, museums, and the like, but I feel the most useful was provided by technology. I was in the first generation to grow up with the Web as a fact of life, and made use of online references and search engines every day to research topics in which I'd become interested. From early childhood, many of my questions were answered by a mix of university websites, ad-supported niche reference works, and charitable individuals sharing their own personal knowledge with the world. Today, Wikipedia alone provides peer-reviewed, freely contributed articles on over 1.5 million subjects, and Google indexed 25 billion items in 2005 (it no longer publishes the count). Almost any piece of knowledge known to man can now be located on the Web at the touch of a button.

New means of communication can also aid education. When I was 7, I emailed a science consultant whenever I had a question that I couldn't find a ready answer for on the Web — questions such as "Why don't the passengers in the Concorde hear a sonic boom?", and "Where can I find the Bohr model of every chemical element?" In 1999, during the week of my 8th birthday, I used email to first contact the author of a book I really liked (When Things Start to Think), who happened to be Neil Gershenfeld, now my faculty advisor. I probably wouldn't have bothered to write a formal letter, so if email didn't exist, my educational trajectory would have been entirely different. I was also mentored from many miles away by Ray Kurzweil, in a series of conversations enabled by email; this was another major influence on my life.

Computing is also a creative tool: it can be used to write essays (like this one), produce works of art (I've sold fractal-based art at local festivals), and write computer programs. Programming fascinated me from a very early age, but it wouldn't have kept my interest long if I didn't have access to a computer. I think that my experiences in programming may have been the most influential in my intellectual development: problem-solving and critical thinking are rewarded, math skills are enforced, and I even wrote programs to help teach me things, like an arithmetic drill I wrote in LOGO at age 5. I was also greatly aided throughout my college education in computer science by my earlier self-guided learning of many of the same concepts. Whereas I was taught 8 programming languages in college, I've learned over twice as many others on my own, and those were some of my most valuable and (so far) useful learning experiences.

Seymour Papert's constructionist theory best explains my personal experience with education: "Constructionism is built on the assumption that children will do best by finding ('fishing') for themselves the specific knowledge they need. Organized or informal education can help most by making sure they are supported morally, psychologically, materially, and intellectually in their efforts."

From this point of view, what holds back the education of children in the developing world isn't so much a lack of school-houses or qualified teachers, but a lack of access to technology and communications. Without the Internet, there's no good place for these children to "fish" for knowledge — the local elders probably don't have a Periodic Table of Elements on the hut wall.

But I'm optimistic because the unstoppable force of Nicholas Negroponte's charisma is now squarely facing off against this problem. He's convinced a dream team of technical, educational, and political leaders to spend lots of money and time working on it. His One Laptop Per Child (OLPC) project shows no signs of failing, despite many reports to the contrary, and it's moving at a breakneck pace towards a future, not more than a decade or two off, when every child in the world - developing and developed — really does have a laptop. Imagining the possibilities is a start, but it seems like the OLPC team, driven by the constructionist theories, has developed a host of innovative hardware and software that really do promise to bring a useful and creative education to the world.

I'm optimistic because my lab, the Center for Bits and Atoms, with the aid of the NSF and other global organizations, is deploying "Fab Labs" — Fabrication Laboratories - all around the world, from Boston to the Midwest to rural India and a village north of the Arctic Circle. Fab Labs bring something that even the developed world lacks broad access to: cheap, easy fabrication of physical objects and custom electronics. With a set of inventory, machines and computers that totals roughly US$50,000, those who enter the lab can make wooden furniture, high-gain antennas, and even ~$10 "thinner clients" (terminals that connect over a variety of communications media to ~$1200 servers that support hundreds of users). These types of objects can be and are developed by local inventors, produced by oneself or in a "micro-VC" community business, and cost very little. Fab Labs are also another huge enabling factor for constructionist education; making things is one of the most useful and creative sorts of education.

Media artist Toshio Iwai, who was Artist-in-Residence at San Francisco's Exploratorium and wrote the video game Electroplankton, told a story that his mother took away all his toys when he was a small child and told him that he could only play with toys he made himself. Iwai credits that moment as a turning point in his life: from passive to active, consumer to creator. I'm optimistic that in the future, education will not take place in centralized Houses of Learning, places where students listen to lectures and then answer questions about them; that education will take place at construction sites, in art studios, in computing centers: places where useful and creative things are done. I'm optimistic that it will be a more useful and creative education that will produce more useful and creative people that will contribute, in turn, to a more useful and creative society.


ROGER HIGHFIELD
Science Editor, The Daily Telegraph; Coauthor, After Dolly

The Public Will Become Immune To Hype

I am quietly optimistic that in the wake of years of hype over the practical significance of gene discoveries, fusion power, magic bullets, superconductivity, gene therapy, cures for ageing, and embryonic stem cells*, the public will become more pessimistic about the practical benefits of discoveries made in the lab and more appreciative of what science is really about — basic curiousity, rationality and the never-ending dialogue between ideas and experiments. With luck, the public will spend more time gazing up at the blue skies of science and not down at the brown torrent of parochial and humdrum expectations about what science can do for them. Science does not have to be useful, save to put forward useful models of how nature works. Science does not have to cure disease. Science does not have to make us live to 120. Science does not have to make money.

* Being a science journalist, I plead guilty on all counts


RUDY RUCKER
Mathematician, Computer Scientist; CyberPunk Pioneer; Novelist; Author,
Lifebox, the Seashell, and the Soul

A Knowable Gaian Mind

There will be an amazing new discovery in physics on a par with the discovery of radio waves or the discovery of nuclear reactions. This new discovery will involve a fuller understanding of the level of reality that lies "below" the haze of quantum mechanics—suppose we call this new level the domain of the subdimensions.

Endless free energy will flow from the subdimensions. And, by using subdimensional shortcuts akin to what is now called quantum entanglement, we'll become able to send information over great distances with no energy cost. In effect the whole world can become linked like a wireless network, simply by tapping into the subdimensional channel.

This universal telepathy will not be limited to humans; it will extend to animals, plants, and even ordinary objects. Via the subdimensions you'll be able to see every object in the world. Conversely, every object in the world will be in some limited sense conscious, in that it will be aware of all the other objects in the world.

A useful corollary is that any piece of brute matter will be a computer just as it is. That is, once we can reach into the inner self of an object, we'll become able to program the behavior of things like rocks or log—without our having to attach any kind of microprocessor as an intermediary.

Humans will communicate at a vastly enhanced level. Presently I communicate an idea by broadcasting a string of words that serves as a program for reconstructing one of my thoughts. Once we enjoy subdimensional telepathy, I can simply send you a link to the location of some particular idea in my head.

Machines will fade away and, in particular, digital computers will be no more. The emerging interactions of Earth's telepathically communicating beings will become a real and knowable Gaian mind. And then we will become aware of the other higher minds in our cosmos.


GREGORY BENFORD
Physicist, UC Irvine; Author, Deep Time

Save The Arctic

No one truly thinks we can slow global climate change within half a century; at least, no economist who has looked at the huge momentum of energy demand in the developing countries.

So: despair? Not at all. Certainly we should accept the possibility that anthropogenic carbon emissions could trigger a climactic tripping point, such as interruption of the gulf stream in the Atlantic. But rather than urging only an all out effort to shrink the human atmospheric-carbon footprint, my collaborators and I propose relatively low tech and low expense experiments at changing the climate on purpose instead of by mistake.

If we understand climate well enough to predict that global warming will be a problem, then we understand it well enough to address the problem by direct means.

Perhaps the simplest idea uses the suspension of tiny, harmless particles (less than one micron) at about 80,000 feet altitude, in the stratosphere.

A first test could be over the arctic, since the warming there is considerable. The polar bears need hjelp right now, not when we might get control of emissions, out beyond 2050. The Arctic atmospheric circulation patterns tend to confine the deployed particles, sweeping them around the pole but not southward.

One could use enough of the tiny particles to create a readily measurable shielding effect. An initial experiment could occur north of 70 degrees latitude, over the Arctic Sea and outside national boundaries. The particles would reflect UV rays back into space. They would reduce warming and stop the harm of UV rays to plants and animals. Robust photosynthesis would still occur, fueled by the visible spectrum.

This idea exploits our expanding understanding of the climate system, plus our knowledge that the marked cooling by volcanoes in the last century arose from sulphate aerosols at high altitude.

If this works, it could arrest Arctic warming and reverse the loss of sea ice. Since few live there, any side effects on people would be minor. By placing the particles at a high altitude, we can arrange for the first experiments to end when they rain out into the sea, perhaps after the Arctic summer has passed.

We could then put this particulate shield and other technologies on the shelf quickly and cheaply. They would be ready for use if the global environment worsens, signals that the scarier scenarios of a warming climate might be threatening.

Costs seem attainable—perhaps ten million dollars for a first experiment. Trials over open ocean are little constrained by law or treaty, so show-stopper politics may be avoided. "No Environmental Impact Statement Required" should be the goal.

We hope that a favorable experiment could change the terms of the global warming debate for the better. We must think of other methods of trimming the effects of warming, not just a War on Carbon that will take a century to win. As economist Robert Samuelson recently said, "The trouble with the global warming debate is that it has become a moral crusade when it's really an engineering problem. The inconvenient truth is that if we don't solve the engineering problem, we're helpless."


TIMOTHY TAYLOR
Archaeologist, University of Bradford; Author, The Buried Soul

Skeuomorphism

I am optimistic about skeuomorphism. Odd, perhaps, but true.

In a small wire tidy on my desk I have several corks. But they are not cork. The word cork comes from the Latin for oak, quercus, a sub-species of which has the spongy bark that is so useful for sealing wine in bottles. In the 1980s, demand for high quality cork began to outstrip supply. As low grade cork often taints (or 'corks') wine, substitutes were sought. My corks are synthetic. One is cork-coloured and slightly variegated to make it appear traditional; like real corks in the German Riesling tradition, it is stamped in black with a vine tendril motif. Another is less convincingly mottled, and is mid-yellow in colour with the name of the vintner, Gianni Vescovo, printed in bold black. Both these corks are skeuomorphs—objects that preserve formal vestiges of the constraints of an original no longer strictly necessary in the new material. First generation skeuomorphs are close mimics, even fakes.

Second generation skeuomorphs, like the Vescovo cork, abandon any serious attempt at deception. Its mottling, and the fact that it is still a functional cork, rather than a metal screw-top closure (equally efficient for the modest young wine it briefly protected) is a comforting nod to the history of wine. At the same time it signals a new, more consistent, freedom from contamination. As synthetic corks became more familiar, new and more baroque forms arose. These third generation skeuomorphs are fun: a bright purple cork that stoppered an Australian red suggests a grape colour, while a black cork has a hi-tech look that draws symbolic attention to the new techniques of low-temperature fermentation in stainless steel. This black cork is still mottled, but in an exaggerated and unconvincing manner—a self-conscious and playful back-reference both to real corks and to earlier skeuomorphic examples. One could not conceive of the black cork without a process of skeuomorphic familiarization, through first and second generation examples. Put the black cork next in sequence with a real cork, and the dissonance would be too great.

I see much of the history of technology as an unplanned trajectory in which emergent skeuomorphic qualities often turn out to have been critical. Corks are a relatively trivial example in an extraordinary history of skeuomorphism, impossible to review here, but which encompasses critical turns in material development from prehistoric flint, via the discovery of metals and alloys, to complex compound objects, of which computers are a modern manifestation.

My optimism about skeuomorphs arises, as optimism often does, from former pessimism. I grew up with Alan Turing's unsettling vision of a future machine indistinguishable from a human in its reactions. Ray Kurzweil's provocative prediction of the impending 'singularity'—the point when computer intelligence would start to leave humans gasping in its intellectual wake—added to my fears. I actually began to worry that efforts to enculture my children with Shakespeare and Darwin, and even with spiritual and moral values, might be rendered peremptorily redundant by cold robotic Übermenschen.

I have recently become quite relaxed about all this, but not because I doubt for a moment that computers are rapidly becoming very smart indeed, and will become smarter, in some directions, than we can easily imagine. Computers explicitly reproduce aspects of the human brain. Yet their eventual power will probably not be in simulation or deception. There will never be a perfect Turing machine, except under conditions so artificial and in contexts so circumscribed as to be rather ridiculous. Instead, by surpassing us in some areas, computers will relieve our brains and bodies of repetitive effort. But it will not be mimicry of our brain function that will be important. If they behave as other skeuomorphs before them, it will be computers' currently unimagined emergent qualities that we will come to value most,  enhancing and complementing our humanity rather than competing with and superseding it.

In like fashion, the synthetic corks have taken the pressure off the oak groves, securing their future and with it those genuine champagne moments. Happy New Year!


STEPHEN H. SCHNEIDER
Biologist; Climatologist, Stanford University; Author,
Laboratory Earth

The Ozone Hole

As a climate scientist, seeking optimism is like a scavenger hunt — have to look in some strange places.

As an example, take the ozone hole that opened up 20 years ago and nearly instantly (in a few years, which is really fast in international treaty terms) created positive action: the Montreal Protocol to ban ozone depleting substances. So that is a good example of optimism, my students often suggest—right? Well, maybe, because we knew about the likelihood of ozone depletion for 15 years before the ozone hole was proved to be caused largely by human emissions.

So what happened since the early 1970s?: the chemical industries denied it, took out character assassination adds in major media to cast doubt on the scientists doing the work, and hired attack dog lobbyists to block action in Washington.

Where is the optimism in this little piece of scientific history? There was some: unbeknownst to most of us, the chemical industry actually believed the science was about right, preliminary as it was, and despite political posturing to the contrary had been working on substitutes for ozone-depleting CFCs, so that one day, when the scientific evidence and politics aligned for ozone action, they were ready to put on a green cloak — and by the way, take over market share by selling the world their newly designed greener "ozone friendly" chemicals. So was the ozone glass half empty or half full — one could legitimately see it either way: (optimists) we acted when we had to; versus (pessimists) why did it take a catastrophe in the making to get action we should have taken a decade before on likely science.

Any lessons from the ozone affair for climate change policy?

First, what would constitute a "climate hole"? Perhaps, the 2003 Euro heat waves that killed some 35,000 well-heeled Europeans? Hurricane Katrina and New Orleans — connected to recent evidence that global warming should statistically increase top intensity tropical cyclones? Amazingly enough, despite all the pessimistic talk from environmental types about bio-geophysical "tipping points" in the climate system (e.g., shut down to the Gulf Stream, collapse of Greenland Ice sheet etc,), my optimistic half brain thinks the only clearly demonstrable "tipping phenomena" are psychological-political: the symbolic events of climate impacts just mentioned and the advent of a popular movie combined with a big change in attitudes about inventing our way out of global warming by some large corporations no longer lobbying to prevent policy — these include GE, BP, PG&E, Duke Energy, Wal-Mart and many others.

These events actually are cause for optimism. But, lest the O overtake the P a bit too fast, what has been proposed as climate policy so far is only a palliative that will stop less than half the projected warming — the really dangerous events occur after a few degrees of warming and we are still squarely on that pathway, even if making some optimistic sounds and a few small moves to change direction.

So in the optimism-pessimism derby, optimism has staged a comeback in the back stretch and is gaining on the more apocalyptic favorite. That is the good news. But without widespread acceptance of the need to reconfigure our energy systems — and put our overweight cars on a diet — the troubling favorite is still a few lengths ahead as we enter the home stretch. But optimism is quite legitimate still: attitudes are changing fast. Scientists still need to keep explaining credibly the consequences of all actions — and inactions — so we have a good chance to avert the highest climate change risks that business as usual is steaming us toward. It is still doable to steer the big ship toward safer waters, but the window of opportunity — and optimism — diminishes the longer we delay implementing sea changing actions.

Perhaps the most optimistic aspect for me is that the young scientists I work with understand the dilemmas and are dedicated to credibly explain the situation to all who will engage.


DAVID BERREBY
Science Writer; Author,
Us and Them: Understanding Your Tribal Mind

The Zombie Concept Of Identity

I'm optimistic about what I call the zombie concept of identity: I think it is losing its grip on the thoughts of scientists, lay people and their political leaders.

The zombie concept of identity is the intuition that people do things because of their membership in a collective identity or affiliation. It's a fundamental confusion that starts with a perhaps statistically valid idea (if you define your terms well, you can speak of "American behavior'' or "Muslim behavior'' or "Italian behavior'')—and then makes the absurd assumption that all Americans or Muslims or Italians are bound to behave as you expect, by virtue of their membership in the category (a category that, often, you created).

I think it's fair to say that scientists have shown that people are not identity zombies. Much work has been done (some by people on Edge, like Mahzarin Banaji and Scott Atran) that shows how the connections between identity and behavior are never so simple. It's clear that all of us have many overlapping identities (American, middle-aged person, Episcopalian, Republican, soccer mom can be attached to one person in a single morning); it's what we're doing, and who we're doing it with, that seems to determine which of these identities comes to the fore at a given time.

Even as these ideas have become familiar in anthropology, social psychology and other disciplines, they didn't seem to make it into the everyday discourse with which people talk about terrorism, immigration, social change etc. That has had a number of bad effects. Leaders who think that people become terrorists because they're Muslims, or that new immigrants will be hostile to a society because they're immigrants, are making decisions that are bad for their nations, perhaps even unsafe.

Lately, though, I see signs that people realize the limits of the zombie identity. Pop culture is rich in stories and images that remind people of overlapping identity. More importantly, political rhetoric is giving way to realism about human psychology.

One example: The anthropologist David Kilcullen was quoted in a recent New Yorker explaining that jihadists are pulled into terrorism by their circle of friends and their social networks — that "there are elements in human psychological and social makeup that drive what's happening. This is human behavior in an Islamic setting. This is not 'Islamic behavior'''.

The significance here is that Kilcullen is not, currently, an academic. He's an official of the US State Department. My hunch is that people in charge of fighting democracy's enemies will increasingly have to deal with identity as it is, even as popular culture is ever richer in reminders that people have a lot of overlapping affiliations.

So I have more than a little hope that in 10 years' time, people who take seriously the zombie concept of identity will be looked upon as we look upon people who believe in witchcraft. That will mean that popular discourse is closer to science than it used to be.

And I think there may be a kind of feedback loop that will be good for science: As daily talk becomes more comfortable with the idea that people have multiple identities whose management is a complex psychological phenomenon, there will be more research on the central questions: What makes a particular identity convincing? What makes it come to the fore in a given context?

Those are the issues that link society, mind and body and I think when we have more competing theories about how them, we'll be closer to understanding why people are they way they are. I'm optimistic that this will happen.

That doesn't mean that I think scientists, or anyone else, will stop saying things like "you know, I was raised Catholic'' or "I'm a typical Jewish mother'' to explain human behavior. Galileo died five centuries ago, but we still say "what a nice sunrise.'' But in the same way that we know that really, it's the earth that moves relative to the sun, I think we will arrive in the next few years at a better understanding of what collective identity means and how it is made.


KARL SABBAGH
Writer and Television Producer; Author, The Riemann Hypothesis

The Optimism of Scientists

To ask "what am I optimistic about?" is rather like asking "what am I tall about? or "what am I English about?" For me, optimism is a personal characteristic rather than an attitude to be applied to some things and not others. Fortunately it is a characteristic that many scientists have and others acquire, and I am optimistic that this optimism will continue to be a unique human characteristic. Without optimism, why would anyone embark on the complex and interrelated series of steps that makes up any scientific experiment, let alone huge enterprises like the Manhattan or Apollo projects? And faced with disasters like Challenger and Columbia, and the results of inquiries into how they happen, how could anyone have the faith to continue unless they were extremely optimistic?

The Large Hadron Collider at CERN is perhaps the greatest testament to this optimism. Conceived decades ago, absorbing two and a half billion dollars, a collaboration between over 40 countries, designed to accelerate invisible particles to 99.999999 the speed of light and to create a theoretical entity, the Higgs Boson, for which no evidence exists — if this is not a triumph of optimism over realism, I don't know what is.

And I believe this optimism is more than just logical and reasoned inference from previous researches. Scientists are optimistic about science in general as a tool for discovery. They believe that the methods of science will produce valid results. They believe that whatever aspect of the universe they turn their attention towards, even if never previously explored, they can design experiments and carry out observations that will be valid and provide sustainable increments in our understanding. Is this optimism unique to science? I believe it is. No one has such strong faith in the future benefits of politics or economics or art or philosophy or technology. Some favour capitalism, others socialism; some favour nuclear power, others renewable energy; some believe in a wide-ranging humanistic education, others believe in vocational training; some believe in nationalism, others in internationalism. But scientists believe in science — that is an indication of their optimism.


CHRIS ANDERSON
Editor in Chief, Wired Magazine; Author, The Long Tail

Metcalfe's Law of Minds

Our species is unique in its ability to use communications to spread learning across populations, allowing us to get smarter and more capable far more quickly than evolution alone would allow. What makes me continually hopeful is that those tools of communications continue to get so much better, so much faster. Anyone who can explore Wikipedia and not be both humbled and filled with confidence in the collective potential in the people all around us is a cynic indeed. And we've only just scratched the surface of such networked intelligence.

Metcalfe's Law says that value of a networks grows with the square of the number of nodes. Today's Web, which is as much about contributing as it is consuming — two-way links, as opposed to the old one-way networks of broadcast and traditional media — allows the same to apply to people. Connecting minds allows our collective intelligence to grow with each person who joins the global conversation. This information propagation process, which was once found in just a few cultures of shared knowledge, such as academic science, is now seen online in everything from hobbies to history. The result, I think, will be the fastest increasing in human knowledge in history.

This morning I was explaining to a nine-year-old about Moore's Law and the magical power of the continuous learning curve. "Will it ever end?" he asked. "I don't see why it should," I answered. That's optimism for you.


NICHOLAS HUMPHREY
Psychologist, London School of Economics; Author, Seeing Red

The Best Is Yet To Come

If I had lived in the year 1007, and had been asked what I looked forward to for my descendants in the next millennium, I might have imagined many wonderful possibilities. But I would not — because I could not — have imagined the music of Mozart, the painting of Rothko, the sonnets of Shakespeare, the novels of Dostoyevsky. . . It means I would have failed to see one of the best reasons of all for being optimistic: which is, the power of human artistic genius to astonish us again and again. I will not make the same mistake twice. So let me say straight out, in 2007 I hope and expect that the best is yet to come: that greater works of art than any the world has ever seen will be created by human beings not far ahead of us — works of presently unimaginable aesthetic and moral force. And, mind you, it will not require genetic modification, computer hybridization, high-tech brain enhancement or whatever — it will simply require that we continue to be the kind of people that we are.


< previous

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >


John Brockman, Editor and Publisher
Russell Weinberger
, Associate Publisher

contact: [email protected]

Copyright © 2007 by
Edge Foundation, Inc.
All Rights Reserved

|Top|