< previous

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >



Gregory Cochran
Paul Davies
Helen Fisher
Xeni Jardin
Gary Marcus
Thomas Metzinger
Paul Saffo
Scott Sampson
Dan Sperber
Sherry Turkle

Back to Index Page

Consultant, Adaptive Optics; Adjunct Professor of Anthropology, University of Utah

The Sorcerer's Apprentice

"In the sweat of thy face shalt thou eat bread"—it has always been that way.

Most men have been slaves of necessity, while the few who were not lived by exploiting others who were. Although mechanization has eased that burden in the advanced countries, it is still the case for the majority of the human race. Limited resources (mainly fossil fuels), as well as negative consequences of industrialization such as global warming, have made some people question whether American living standards can ever be extended to most of the human race. They're pessimists, and they're wrong.

Hardly anyone seems to realize it, but we're on the threshold of an era of unbelievable abundance. Within a generation—sooner if we want it enough—we will be able to make a self-replicating machine, first seriously suggested by John von Neumann.

Such a machine would absorb energy through solar cells, eat rock and use the energy and minerals to make copies of itself. Numbers would grow geometrically, and if we manage to design one with a reasonably short replication time—say six months—we could have trillions working for humanity in another generation. You might compare this process to a single cell of blue-green algae, which replicates over the summer until it covers the entire pond. But unlike algae, a self-replicating machine would be programmed and controlled by us. If it could make it its own mechanical and electronic parts, it would also be able to make toasters, refrigerators, and Lamborghinis, as well as the electricity to power them. We could make the deserts bloom, put two cars in every pot, and end world poverty, while simultaneously fighting global warming. It's closer than you think, since the key technologies are already being developed for use in rapid prototyping and desktop manufacturing. Aristotle thought that slavery would only end when looms weave by themselves: we're almost there.

Right now the human race uses about 13 trillion watts: the solar cells required to produce that much power would take up less than a fifth of one percent of the Earth's land surface—remember that the Earth intercepts more solar energy in an hour than the human race uses in a year. That's a lot of solar cell acreage, but it's affordable as long as they make themselves. We could put them in deserts—in fact, they'd all fit inside the Rub' al Khali, the Empty Quarter of Saudi Arabia. As I understand it, we like depending on the Saudis for energy.

But there are better ways. Solar energy works better in space—sure, the weather is better, but also consider that the vast majority of the Sun's energy misses the Earth. In fact only about one part in two billion warms this planet. Space-based self-replicating systems could harvest some of that lost sunlight—enough to make possible a lot of energy-expensive projects that are currently impractical. An interstellar probe is a bit beyond our means right now, and the same is true of terraforming Venus or Mars. That will change within our children's lifetimes.

I'm reminded of Mickey Mouse as the sorcerer's apprentice in Fantasia... He enchanted a broomstick to fetch water, but didn't know how to stop it. When he split the broom with an axe, over and over, each of the pieces took up a pail—and before you know he was in over his head. But where he saw a crisis, we see opportunity.

Technology Forecaster; Consulting Associate Professor, Stanford University

Humankind Is Particularly Good At Muddling

I am a short-term pessimist but a long-term optimist. History is on my side for the cause of today’s fashionable pessimism lies much deeper than the unpleasant surprises of the last half-decade. In fact, both our pessimism and the rise of fundamentalisms that so bedevil global society at the moment share a common source—the year 2000 and the roll-over into this century. The approach of each New Year inevitably, predictably, causes us to look back and wonder what lies ahead.  It is no coincidence that you pose the annual Edge Question in December and not July.

Moreover, contemplation of the New Year amplifies our predispositions; pessimists become more certain that things are falling apart, while optimists see greater hope than ever. Opinion inevitably clusters at the extremes. This tendency is amplified by the number of zeros in the year to come. Decade ends affect the zeitgeist for a year or two, while century endings reverberate for 10 years or more, as demonstrated by the impact of the Fin de siècle a hundred years ago.

We have less experience with millennium roll-overs, but we are learning fast.  With perfect hindsight, the influence of the approaching millennium can be seen throughout the 1990s and even earlier. Millennial anxieties contributed in no small part to the rise of religious fundamentalism, while millennially-inflated hopes encouraged the touchingly innocent optimism overlaid atop the internet revolution and emergent globalization.

Inevitably, the greatest impact of our calendric angst occurs after the triggering date has passed. The year 2000 is still affects—perhaps even dominates—the zeitgeist today. Eschatologically-obsessed believers like Muqtada al-Sadr stand astride events in Iraq, convinced by the calendar that the Madhi redeemer will finally reveal himself. Closer to home, an astonishingly large population of Americans are equally convinced that the Apocalypse will arrive at any moment, and there is little doubt that fundamentalist apocalyptic beliefs directly affect US policy. There also is no shortage of millennially-inspired optimists (some whose answers are on this site) confident that the wonder machines of science and technology will allow us to live forever, power our devices with puffs of hydrogen, banish terrorism, and usher in a new age of human understanding and world peace.

I am a short-term pessimist because the Millennium is still clouding our collective thinking and may yet inspire the addled few to try something truly stupid, like an act of mega-terror or a nuclear exchange between nations. But I am a long-term optimist because the influence of the Millennium is already beginning to fade. We will return to our moderate senses as the current uncertainties settle into a comprehensible new order. I am an unshakable optimist because in its broadest strokes, the future will be what the future has always been, a mix of challenges, marvels and endless surprise. We will do what we have always done and muddle our collective way through. Humankind is particularly good at muddling, and that is what makes me most optimistic of all.

Social and cognitive scientist; Directeur de Recherche, CNRS, Paris; Author,
Rethinking Symbolism

Altruism on the Web

Had the question been, "What are you pessimistic about?" I would have answered: If there is any progress in human wisdom (and, yes, I suppose there is) it is pathetically slow, while ever faster technological advances provide the means for self-righteous, unwise people with power, wealth, or charisma to cause greater and greater havoc. I don't alas have any equally broad and compelling reasons to be optimistic about the future of humankind. Humans, however, are full of surprises, many of them excellent, arousing new hopes every day.

"From each according to his ability, to each according to his needs," so did Marx define communism. Outside of narrow kinship or friendship groups, this kind of altruistic sharing of resources has hardly ever been encountered, and it is not difficult to understand why: Such a utopia, however attractive, is quite impractical. Yet, with the advent of the new information technologies and in particular of the Web, a limited form of informational 'communism' that no one had predicted has emerged and is fast developing. A vast array of technological, intellectual and artistic creations, many of them of outstanding quality, are being made freely available to all according to their needs by individuals working according to the best of their abilities and often seeking self-realization even more than recognition. I have in mind the freeware, the wikis, the open source programs, the open access documents, the million of blogs and personal pages, the online text, image, and music and libraries, the free websites catering to all kind of needs and constituencies. Who had been optimistic enough to expect not just the existence of this movement, but its expansion, its force, its capacity to rival commercial products and major businesses and to create new kinds of services, blogs for instance, of great social and cultural import even if of limited economic value?

Cynics or realists—call them what you want—might say: Economic benefit is still the main force driving innovation. Gifted disinterested amateurs—if that is truly what they are—are a welcome anomaly spurring competition, but what matter to the end user is the utility of the product. A cheaper product, and a fortiori a free one, is preferable, everything else being equal, but businesses, by providing extra quality worth the cost, make it sure that everything is rarely equal. So let us praise innovation wherever it comes from, paying the price when justified and mouthing a word of praise when it comes free. But let us not read too much—informational communism? Give me a break—into a probably ephemeral sociological oddity. As many others have noted, the economics of information are peculiar, if only because you can give information without losing it and you may gain from giving it as much or more as from receiving it. Applying a standard economic model to the movement of information on the Web may not be the best science (actually, applying a standard economic model to standard economic situations may not be the best science either).

I am optimistic about the development of both individual and collective forms of altruism on the Web. Moreover, I believe that what we see on the Web has more diffuse counterparts in society at large. The Web is a network of networks where, at every individual node, many communities overlap, and where local allegiances have at best a weak hold. The World Wide Web is the most dynamic and visible manifestation, and a driving force of a world that is itself becoming one wide web. In this world, more and more altruistic acts—acts that had in ancestral times been aimed just at one's kin, and later extended to tribe, sect, or country—may now, out of sensible sense of common destiny, be intended for the benefit of all. No Hallelujah however. If our destiny is indeed ever more common, it is because we all stand to suffer from the misdeed of a few as much as to benefit from the generous actions of many.

Research Professor, Department of Anthropology, Rutgers University; Author,
Why We Love

"Free Love"    

"Love wins; love always wins," it has been said. But throughout most of our agrarian past, love lost, at least among the upper classes. Today I am optimistic about romantic love, because we are returning to patterns of romance that humankind enjoyed across most of our deep history: choosing lovers and spouses for ourselves.

Parents may have started to arrange their children's marriages when the brain began to develop some two million years ago. But in those few hunting and gathering societies that still survive, parents only initiate the first wedding of a son or daughter. Moreover, this contract is flexible. If the callow newlyweds are not happy with their match, they pick up their few belongings and walk home. The contract has been honored and parents are pleased to see their youth again. The young go on to choose their next partner for themselves.  

But as our forebears began to settle down some 10,000 years ago, and as they acquired immoveable property like fields of grain and sturdy homes, they began to need to cement their social ties. What better way than to wed your daughter with my son? Strictly arranged marriages became a way to built one's fortune and secure one's genetic future. These marriages had to endure, too. In some farming communities, you could fall in love with whom you chose; but you married the "right" individual, with the "right" kin connections and "right" social, economic and political ties. 

The widespread tradition of strictly arranged marriages began to dissipate with the beginning of the Industrial Revolution. As men and women left the farm for factory work, they no longer needed to maintain many of these connections. They could chose partners for themselves.

Today this movement is gaining speed, due to two dramatic world trends: the global rise of women in the paid labor force; and the aging world population. For millions of years women commuted to work to gather their fruits and vegetables and came home with much of the evening meal. Women were economically, sexually and socially powerful. With the invention of the plow, however, women lost much of their economic independence. But as women go back to work and come home with money, they are reacquiring their economic autonomy—and their ancient ability to choose their lovers and spouses for themselves. With the aging world population, high divorce and remarriage rates, and many modern inventions, from Viagra to hip replacements, women (and men) now have the time, opportunity and health to make their own match, what the Chinese call "free love."

And along with the rise of romantic love within marriage has come what sociologists hail as the 21st century marital form, known as peer marriages, symmetrical marriages or companionate marriages: weddings between equals. "Marriage," Voltaire wrote, "is the only adventure open to the cowardly." Today more and more men and women have the opportunity to enjoy this adventure—life with someone they passionately love. In this way humanity is regaining a tradition that is highly compatible with our ancient human spirit.

Johannes Gutenberg-Universität Mainz; Author,
Being No One

I Will Be Dead Wrong Again

I am optimistic that I will be dead wrong again. As I have frequently been in the past. Being a philosopher, I was strongly opposed to marriage—on strictly theoretical grounds of course! And about the only thing I always agreed on with Nietzschewas that married philosophers basically are clowns, as he put it: people who belong in a comedy play. Real life proved me wrong (at least I think so), and I am glad it did. Not a single one of all these high-paid sociologists and politologists predicted the wall's coming down in 1989. They were dead wrong. And, boy, would each one of them have loved to be the one to make exactly this prediction! I was also dead wrong in believing that European governments would never have the guts and the actual power to ban advertisements for tobacco products—or that European citizens would actually stop smoking in bars and public places, simply because their governments told them to. Wasn’t it much more plausible to expect major rebellions in countries like Ireland or Italy? How could anyone believe this could actually work?

Now that America is not a Western country any more, I have serious doubts that Europe can actually rescue the heritage of enlightenment. Who will sustain democratic values, and fight for all these old-fashioned ideas like human rights and freedom of speech? China forcefully looks for a path of its own, but in a way that many find quite unsettling. Will India—now the world’s greatest democratic project—manage or will it collapse into even more corruption and self-generated chaos? Who will conserve and cultivate our legal systems, who will culture scientific rationality and the brand new tradition of settling ethical issues by argument, not by force? Europe is in a strange state: Russia looks bad, Italy is a twilight state, Germany can’t move, in many countries like Austria or Denmark the voters are flirting with the extreme right. No constitution. No common vision. And the pressure of globalization on our social nets.

If global sociodynamics keeps on unfolding as it currently does, isn’t it likely that Europeans on their own will not stand a chance to change the overall trend? America is gone for good. How rational is it really—to still keep on believing that Europe as a whole will not only grasp the historical challenge, but eventually get its act together? I am optimistic that, once again, I will be dead wrong.

Tech Culture Journalist; Co-editor, BoingBoing
; Commentator, NPR; Columnist, Wired

Truth Prevails. Sometimes, Technology Helps

I became a born-again optimist this year in an unlikely place: surrounded by hundreds of cardboard boxes filled with the dead.

They were indigenous victims of Guatemala's civil war. Row after row, stacked floor to roof, on the top level of a building protected by concertina wire and armed guards in Guatemala City. This site is home to a group called the Forensic Anthropology Foundation of Guatemala.

The living were downstairs. Using open source software, recycled computers, and DNA forensics help from labs in the United States, they work to identify the dead. The FAFG staff includes lawyers, 'antropologos forensicos' and I.T. engineers. The process begins when someone tips them on the whereabouts of one of these clandestine mass graves. Then comes the slow digging, and what must be painful conversations with the surviving relatives, who often fear retribution from the perpetrators — because the killers sometimes live in the same village, right next door. The army recruited soldiers from the same Mayan villages their scorched-earth policies sought to destroy.

The FAFG exhumations yield clumps of bones, flesh, sometimes the clothing the victim wore when the killing happened. And back in this Guatemala City building now, the living are cleaning and scraping and sorting those clumps of bone and dirt, laying them out on tables, brushing the soil off, marking each tibia and fibula and tooth with codes that will soon be tapped into databases. When everything comes together just right — the survivor's testimony, the database tables, the DNA prints, the bullet holes through the dry cranium, the dig maps — when all of that clicks, someone then writes a code in black marker on the side of a cardboard box.

"Jacinto Rodriguez, FAFG-482-V-I, Nebaj, El Quiché." He was one of thousands whose deaths the military authorities denied or discounted for decades.

Sometimes, governments turn on their own citizens, and those corrupt regimes are sustained in part by lies. Sometimes the lies last for decades. Sometimes longer.

But science does not lie.

These boxes full of bones, and all the data with which they're tagged: none of that lies. Even though the living in this building work under death threats (they're texted in by SMS now), even though they lack financial, technical and practical resources — day after day, more of those boxes fill with codes and names. And eventually, the dead return to their pueblos, inside these boxes, for reburial.

"The survivors want to know that their family members will rest in a dignified way, instead of being dumped by the side of the road like dogs," one of the anthropologists told me. "More than justice in the American sense of the word — more than revenge, or legal process — they just want their people back."

I met with other organizations like FAFG this year in Guatemala and other countries. Organizations run by individuals who are working very hard, under impossibly difficult conditions, to uncover and preserve the truth of past human rights violations. And what I saw — in particular, new uses of technological tools to solve old problems — gave me hope.

Even with the greatest of challenges, and the passing of years, the truth eventually prevails. When at least one person believes the truth matters, there is hope.

Psychologist, New York University; Author,
The Birth of the Mind

Metacognition For Kids

We can use the discoveries of cognitive science to improve the quality of education in the US and abroad. To do this, however, we need to radically rethink how our schools work. Going back to the Industrial Revolution, the main emphasis as been on memorization, force-feeding our children with bite-sized morsels that are easily memorize—and quickly forgotten. (Recall the words of Dickens' stern schoolmaster Mr. Gradgrind, "Now, what I want is, Facts. Teach these boys and girls nothing but Facts... Plant nothing else, and root out everything else.") I am not sure it ever served a purpose for children to memorize the capitals of all 50 states (as I failed to do in junior high school), but in the age of Google, continued emphasis on memorization is surely largely a waste of time.

Five decades of cognitive science have taught us that humans are not particularly good memorizers—but also that we as a species have bigger fish to fry. Hamlet famously marveled that humans were "noble in reason", "infinite in faculty", but experimental psychologists like Daniel Kahneman and the late Amos Tversky have shown that humans are actually often poor reasoners, easily fooled. The average person tends to have a shaky grasp on logic, to believe a lot of what he (or she) hears unreflectively, and to be overly confident in his (or her) own beliefs. We tend to be easily fooled by vivid examples, and to notice data that support our theories—whilst forgetting about or ignoring data that go against our theories. Yet I cannot recall a single high school class on informal arguments, how to spot fallacies, or how to interpret statistics; it wasn't until college that anybody explained to me the relation between causation and correlation. In the age of the internet, our problem is not that children can't find information, but that they can't evaluate it.

What children of today need is not so much a large stock of readily Googleable information as a mental toolkit for parsing what they hear and read. As the old saying goes, it is better to teach a man how to fish than to simply give him fish; the current curriculum largely gives children fish, without teaching them a thing about how to fish for themselves.

How to teach children to fish for themselves? I would start with a course in what cognitive scientists call metacognition, knowing about knowing, call it The Human Mind: A User's Guide, aimed at say, seventh-graders.. Instead of emphasizing facts, I'd expose students to the architecture of the mind, what it does well, and what it doesn't. And most important, how to cope with its limitations, to consider evidence in a more balanced way, to be sensitive to biases in our reasoning, and to make choices in ways that better suit our own long-term goals. Nobody ever taught me about these things in middle school (or even high school), but there's no reason why they couldn't be taught; in time, I expect they will.

Psychologist, MIT; Author,
Evocative Objects: Things We Think With

The Immeasurables

An eight-year-old sits braiding the hair on the tail of her My Little Pony doll, completely absorbed in the job. The shining plasticized hair is long and resilient; she plays with it for hours. 

She starts by taking the tail and dividing it into three pieces that she braids together. Then, she undoes that braid and begins to nest layers of  braids. She divides the tail into nine pieces and braids each group of three until she has three braids, and then takes these three braids and braids them together. After a while, the girl is starting with twenty-seven pieces, braiding them first into nine, then into three, then into one. The girl is playing with My Little Pony but she is thinking about recursion.

The eight-year-old is one of my MIT students, telling a story of her childhood. For the past thirty years, I have begun each class at MIT by asking my students to write about an object that was important to them on their path toward science. What they have had to say testifies to the importance of objects in the development of a love for science—a truth that is simple, intuitive, and easily overlooked. And it is cause for optimism because it offers a hopeful note as we face our national crisis in science education.

As we argue about testing and standards, about the virtues of digital tools, about whether or not to move to online courseware, we have a tendency—as in any emergency—to look for salvation in the next new thing or things.  In this case, these next new things are testing, measurement, and the computer itself as a way to provide educational solutions. But we can also look to the last things that worked. And one of the things that has always worked in getting young people interested in science has been object passions. From my very first days at MIT in 1976, I met students and colleagues who spoke about how as children they were drawn to science by the mesmerizing power of a crystal radio, by the physics of sand castles, by playing with marbles, by childhood explorations of air-conditioning units.

Certain trends are apparent as I look at the objects that have drawn children to science over the past thirty years. One is an interest in "transparency." Through the mid-1980s, MIT students wrote about being drawn to science by radios, vacuum cleaners, wooden blocks, and broken telephones. These are things to take apart and put back together again. By the end of the 1980s, the emphasis shifts to objects that are investigated through the manipulation of program and code. Yet even with the passage from mechanical to electronic, and from analog to digital, students express a desire to get close to the inner workings of their machines. Even with machines that are increasingly opaque—with a printed circuit board one can no longer "open the hood and look inside"—young people with a scientific bent continue to search for at least a metaphorical understanding of the mechanism behind the magic. And they find it.

Beyond seeking a way to make any object transparent, students extol the pleasure of materials, of texture, what one might call the resistance of the "real." For one, geology became real through her childhood experience of baking a chocolate meringue: "Basic ingredients, heated, separated, and cooled equals planet." A thirteen-year-old looks up at the motion of his fly line while fishing with his father and is reminded of drawings of long, continuous, flowing lines he had made in algebra class. "I realized that the motion of my hand had a very direct effect on the movement of the line, much in the same way that the input to a function produced a given output. Without any formal understanding of the physics involved, I was able to see the fly rod as representing a given function for which I was the input... From this point on, the fly rod was my metaphor for understanding function in mathematics."

Young scientists are encouraged by a personal experience with an object they can understand and with which they can tinker. Playing with objects in their own way leads children to build a personal scientific style. There has been no simple migration to a new digital world. Children grow up in many worlds—they are seduced by the virtual, but always brought back to the physical, to the analog, and of course, to nature.

Science is fueled by passion, a passion that often attaches to the world of objects much as the artist attaches to his paints, the poet to his words. Putting children in a rich object world is essential to giving science a chance. At a time when science education is in crisis, giving science its best chance means guiding children to objects they can love. Children will make intimate connections, connections they need to construct on their own.

One of the things that keeps educators and parents from valuing children's object passions is the fear that children will become trapped in objects, the fear that children will prefer the company of objects to that of other children. But even if the objects in the life of a young scientist do begin as objects of reassurance for a lonely child, these objects—from the periodic table of the elements (because it offers an image of perfect and reassuring organization) to Lego blocks (because they offer a way to create perfect and reassuring symmetries) can become points of entry to larger, transformative experiences of understanding and confidence, very often at the point they are shared.

It seems wise to attend to young scientists' romance with objects. If we do so, we are encouraged to make children comfortable with the idea that falling in love with things is part of what we expect of them. We are encouraged to introduce the periodic table as poetry and LEGOs as a form of art.

In Mindstorms: Children, Computers, and Powerful Ideas, Seymour Papert writes of falling in  love with the gears of a toy car that his father gave him when he was two. Fascination with those gears led to fascination with others. He played with gears in his mind and mathematics began to come alive for him. He fell in love with the gears and he fell in love with science, all at the same time. Papert makes the point that if anyone had tried to measure what was happening to him as this inner explosion of affect and cognition was occurring, they would have found nothing to measure.

I am made optimistic because a conversation about objects reminds us that just because we can't take a measurement doesn't mean that something important is not occurring. Too often when we can't test, we end the conversation. My students' voices make me optimistic because they serve as a reminder that the limit of testing is not the limit of inquiry. It can mark the moment where we turn directly to the child, where we put our deeper intelligence to work.  We can learn what motivates and what inspires..

From a practical point of view, we cannot know in advance whether we stand before a child who will use objects as a path to science. If we insist on one-kind-fits-all curricular programming that takes children away from the idiosyncratic objects they are drawn to, we could miss a child who makes Cs and Ds in math and science but goes on to develop an abiding love for designing complex systems because he has connected with LEGOs and a personal computer. We could miss a child who doesn't think of herself as a science student even as she silently absorbs everything she can learn from chemistry experiments that create purple smoke. We might not count as learning the lessons that come with braiding a pony's tail, casting a fly rod, or baking a meringue.

I am reminded daily of these object passions in the students I teach;  I am optimistic as I begin to sense the political and philanthropic will that could enable these passions to find their voice in education.

Chief Curator, Utah Museum of Natural History; Associate Professor, University of Utah; Host, Dinosaur Planet TV series

A New, Environmentally Sustainable Worldview

Given the current array of critical environmental woes—global warming, habitat loss, and species extinctions, among others—one might assume that there is little room for optimism.  Nevertheless, I am optimistic, albeit cautiously so, about a profound shift in human attitudes toward the environment. 

The current worldview in the Western world is a reductionist perspective that has been dominant for over 300 years.  Founded by scientists such as Descartes, Newton, Galileo, and Bacon, reductionism regards the natural world as a series of machines best understood by ever-more detailed examination of constituent parts.  This mechanistic approach has generated a plethora of scientific breakthroughs—quantum theory, genetics, high-speed computers, and the germ theory of disease, to name a few—with each intoxicating success fueling ever-more intense investigation of nature's components.  Yet it has also fostered a fundamental division between humans and the natural world, with the former envisioned as dominating the latter.

Moreover, the Cartesian perspective on nature has proven to have severe limitations within science.  In particular, because of a myopic focus on the parts, little attention has been given to connections and relationships, let alone wholes.  In response to this perceived gap in understanding, many disciplines have recently turned to a 'systems' approach that often unites once separate disciplines.  Thus, there has been an ever-growing emphasis on interdisciplinary research, with, for example, geobiology and biocomplexity becoming legitimate fields of study.  Simultaneously, many educators have begun to direct their efforts toward revealing the "web of life," including the myriad connections that link the living and non-living aspects of nature. 

The underlying themes of the outdated, mechanistic perspective are isolation and permanence, with objects perceived as relatively permanent and distinct from one another.  In contrast, the new worldview celebrates the opposite concepts: connections and change.  And once again there is a firm grounding in science, which has demonstrated that natural systems are inextricably interconnected and continually undergoing change (particularly if one's perspective includes deep time). 

Thanks in part to a global economy and the World Wide Web, the mantra of this new movement—"It is all connected"—has even made its way into the popular media.  At a slow but increasing pace, people are becoming aware that their everyday decisions can have far-reaching, even global, effects.  Surely there is hope and optimism to be found in the many recent movements toward sustainability, even if most of these efforts remain on a small scale. 

Nevertheless, any optimism with regard to a growing environmental consciousness must be tempered with a double dose of reality.  First, environmental changes are occurring at rates that are entirely unknown in human experience.  To give just one case in point, the rate of species extinctions is about 1000 times greater than has been typical in earth history.  Indeed the current human-induced mass extinction is on track to obliterate on the order of one half of all species on earth by the close of this century, with unpredictable (and perhaps unimaginable) ecological consequences.  Thus, we have little time to make this transformational leap.  The next few decades will be pivotal. 

Second, the transition to a sustainable worldview will not occur simply through a sufficiently heightened fear of environmental collapse.  No, such a fundamental shift will require no less than a transformation of our educational system, not only K-12 but higher education as well.  We must equip parents and educators with the tools to be effective not only in communicating the science of natural systems, but also in fostering passion for nature ("biophilia", to use E. O. Wilson's term).  By necessity, this process will involve getting children outdoors early and often, so that they have a chance to forge bonds with nature.  First and foremost, education should be aimed at teaching children and adults how to live well in the world.  Ultimately, in order for this pressing venture to be successful, scientists must become directly involved, communicating science to a broad audience at unprecedented levels.  In other words, "Third Culture" must step up and take on a major role in this endeavor.

Physicist, Arizona State University; Author,
The Cosmic Jackpot

A One-Way Ticket To Mars

Some time before the end of the century there will be a human colony on Mars. It will happen when people finally wake up to the fact that two-way trips to the red planet are unnecessary. By cutting out the return journey huge savings can be made, and the way will then be open to establishing a permanent human presence on another world.

A one-way ticket to Mars is not an invitation for a suicide mission. Adequate supplies and a nuclear power supply can be sent on ahead, and every two years more supplies, and more astronauts, will be dispatched to the new colony. Mars is relatively inhospitable, but it is far more congenial than outer space. It has all the raw materials needed for a colony to eventually become self-sufficient. To be sure, life would be cramped and uncomfortable for the trail-blazers, but so it was for Antarctic explorers a century ago.

What about the risks of leaving people stranded on Mars? Most of the danger of space flight lies in the launches and landings, as the two shuttle disasters horrifically demonstrated. Eliminating the trip home would therefore slash the overall risk of accidents. The harsh Martian environment would undoubtedly reduce the life expectancy of the colonists, but astronauts on a round-trip would be exposed to comparable health hazards from months of space radiation and zero gravity.

Why would people go to Mars, never to return? Many reasons—an innate sense of adventure and curiosity, the lure of being the first humans to open up an entirely new world, the desire to explore an exotic and unique environment, the expectation of fame and glory. For scientists there are added reasons. A geologist on Mars would be like a kid in a candy store, and would soon clock up a sensational publication record. The crowning achievement would be evidence for life, a discovery likely to transform our view of nature and our place in the cosmos. A straw poll among my colleagues convinces me that there would be no lack of volunteers.

When might the first colonists set out? Within a few years, if politics didn't stand in the way. NASA could send a crew of four to Mars with existing technology, but the agency lacks the nerve and imagination for such an adventurous mission. However, I am optimistic that the new players in space—China and India—will not suffer from Western timidity. A joint Indian-Chinese colony on Mars by 2100 is not only technologically feasible, it is also politically realistic.

< previous

| Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2007 by
Edge Foundation, Inc
All Rights Reserved.