< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12

next >



Printer version


Alun Anderson

Philip W. Anderson

Scott Atran

Mahzarin Banaji

Simon Baron-Cohen

Samuel Barondes

Gregory Benford

Jesse Bering

Jeremy Bernstein

Jamshed Bharucha

Susan Blackmore

Paul Bloom

David Bodanis

Stewart Brand

Rodney Brooks

David Buss

Philip Campbell

Leo Chalupa

Andy Clark

Gregory Cochran
Jerry Coyne

M. Csikszentmihalyi

Richard Dawkins

Paul Davies

Stanislas Deheane

Daniel C. Dennett
Keith Devlin
Jared Diamond
Denis Dutton
Freeman Dyson
George Dyson
Juan Enriquez

Paul Ewald

Todd Feinberg

Eric Fischl

Helen Fisher

Richard Foreman

Howard Gardner

Joel Garreau

David Gelernter

Neil Gershenfeld

Danie Gilbert

Marcelo Gleiser

Daniel Goleman

Brian Goodwin

Alison Gopnik

April Gornik

John Gottman

Brian Greene

Diane F. Halpern

Haim Harari

Judith Rich Harris

Sam Harris

Marc D. Hauser

W. Daniel Hillis

Donald Hoffman

Gerald Holton
John Horgan

Nicholas Humphrey

Piet Hut

Marco Iacoboni

Eric R. Kandel

Kevin Kelly

Bart Kosko

Stephen Kosslyn
Kai Krause
Lawrence Krauss

Ray Kurzweil

Jaron Lanier

David Lykken

Gary Marcus
Lynn Margulis
Thomas Metzinger
Geoffrey Miller

Oliver Morton

David G. Myers

Michael Nesmith

Randolph Nesse

Richard E. Nisbett

Tor Nørretranders

James O'Donnell

John Allen Paulos

Irene Pepperberg

Clifford Pickover

Steven Pinker

David Pizarro

Jordan Pollack

Ernst Pöppel

Carolyn Porco

Robert Provine

VS Ramachandran

Martin Rees

Matt Ridley

Carlo Rovelli

Rudy Rucker

Douglas Rushkoff

Karl Sabbagh

Roger Schank

Scott Sampson

Charles Seife

Terrence Sejnowski

Martin Seligman

Robert Shapiro
Rupert Sheldrake

Michael Shermer

Clay Shirky

Barry Smith

Lee Smolin

Dan Sperber

Paul Steinhardt

Steven Strogatz
Leonard Susskind

Timothy Taylor

Frank Tipler

Arnold Trehub

Sherry Turkle

J. Craig Venter

Philip Zimbardo

Evolutionary Biologist, Charles Simonyi Professor For The Understanding Of Science, Oxford University; Author, The Ancestor's Tale

Let's all stop beating Basil's car

Ask people why they support the death penalty or prolonged incarceration for serious crimes, and the reasons they give will usually involve retribution. There may be passing mention of deterrence or rehabilitation, but the surrounding rhetoric gives the game away. People want to kill a criminal as payback for the horrible things he did. Or they want to give "satisfaction' to the victims of the crime or their relatives. An especially warped and disgusting application of the flawed concept of retribution is Christian crucifixion as "atonement' for "sin'.

Retribution as a moral principle is incompatible with a scientific view of human behaviour. As scientists, we believe that human brains, though they may not work in the same way as man-made computers, are as surely governed by the laws of physics. When a computer malfunctions, we do not punish it. We track down the problem and fix it, usually by replacing a damaged component, either in hardware or software.

Basil Fawlty, British television's hotelier from hell created by the immortal John Cleese, was at the end of his tether when his car broke down and wouldn't start. He gave it fair warning, counted to three, gave it one more chance, and then acted. "Right! I warned you. You've had this coming to you!" He got out of the car, seized a tree branch and set about thrashing the car within an inch of its life. Of course we laugh at his irrationality. Instead of beating the car, we would investigate the problem. Is the carburettor flooded? Are the sparking plugs or distributor points damp? Has it simply run out of gas? Why do we not react in the same way to a defective man: a murderer, say, or a rapist? Why don't we laugh at a judge who punishes a criminal, just as heartily as we laugh at Basil Fawlty? Or at King Xerxes who, in 480 BC, sentenced the rough sea to 300 lashes for wrecking his bridge of ships? Isn't the murderer or the rapist just a machine with a defective component? Or a defective upbringing? Defective education? Defective genes?

Concepts like blame and responsibility are bandied about freely where human wrongdoers are concerned. When a child robs an old lady, should we blame the child himself or his parents? Or his school? Negligent social workers? In a court of law, feeble-mindedness is an accepted defence, as is insanity. Diminished responsibility is argued by the defence lawyer, who may also try to absolve his client of blame by pointing to his unhappy childhood, abuse by his father, or even unpropitious genes (not, so far as I am aware, unpropitious planetary conjunctions, though it wouldn't surprise me).

But doesn't a truly scientific, mechanistic view of the nervous system make nonsense of the very idea of responsibility, whether diminished or not? Any crime, however heinous, is in principle to be blamed on antecedent conditions acting through the accused's physiology, heredity and environment. Don't judicial hearings to decide questions of blame or diminished responsibility make as little sense for a faulty man as for a Fawlty car?

Why is it that we humans find it almost impossible to accept such conclusions? Why do we vent such visceral hatred on child murderers, or on thuggish vandals, when we should simply regard them as faulty units that need fixing or replacing? Presumably because mental constructs like blame and responsibility, indeed evil and good, are built into our brains by millennia of Darwinian evolution. Assigning blame and responsibility is an aspect of the useful fiction of intentional agents that we construct in our brains as a means of short-cutting a truer analysis of what is going on in the world in which we have to live. My dangerous idea is that we shall eventually grow out of all this and even learn to laugh at it, just as we laugh at Basil Fawlty when he beats his car. But I fear it is unlikely that I shall ever reach that level of enlightenment.

Professor of Physics, University of the Mediterraneum, Marseille; Member, Intitut Universitaire de France: Author, Quantum Gravity

What the physics of the 20th century says about the world might in fact be true

There is a major "dangerous" scientific idea in contemporary physics, with a potential impact comparable to Copernicus or Darwin. It is the idea that what the physics of the 20th century says about the world might in fact be true.

Let me explain. Take quantum mechanics. If taken seriously, it changes our understanding of reality truly dramatically. For instance, if we take quantum mechanics seriously, we cannot think that objects have ever a definite position. They have a positions only when they interact with something else. And even in this case, they are in that position only with respect to that "something else": they are still without position with respect to the rest of the world. This is a change of image of the world far more dramatic that Copernicus. And also a change about our possibility of thinking about ourselves far more far-reaching than Darwin. Still, few people take the quantum revolution really seriously. The danger is exorcized by saying "well, quantum mechanics is only relevant for atoms and very small objects...", or similar other strategies, aimed at not taking the theory seriously. We still haven't digested that the world is quantum mechanical, and the immense conceptual revolution needed to make sense of this basic factual discovery about nature.

Another example: take Einstein's relativity theory. Relativity makes completely clear that asking "what happens right now on Andromeda?" is a complete non-sense. There is no right now elsewhere in the universe. Nevertheless, we keep thinking at the universe as if there was an immense external clock that ticked away the instants, and we have a lot of difficulty in adapting to the idea that "the present state of the universe right now", is a physical non-sense.

In these cases, what we do is to use concepts that we have developed in our very special environment (characterized by low velocities, low energy...) and we think the world as if it was all like that. We are like ants that have grown in a little garden with green grass and small stones, and cannot think reality differently than made of green grass and small stones.

I think that seen from 200 years in the future, the dangerous scientific idea that was around at the beginning of the 20th century, and that everybody was afraid to accept, will simply be that the world is completely different from our simple minded picture of it. As the physics of the 20th century had already shown.

What makes me smile is that even many of todays "audacious scientific speculations" about things like extra-dimensions, multi-universes, and the likely, are not only completely unsupported experimentally, but are even always formulated within world view that, at a close look, has not yet digested quantum mechanics and relativity!

Researcher, philosopher, software developer, Author: 3DScience: new Scanning Electron Microscope imagery

Anty Gravity: Chaos Theory in an all too practical sense

Dangerous Ideas? It is dangerous ideas you want? From this group of people ? That in itself ought to be nominated as one of the more dangerous ideas...

Danger is ubiquitous. If recent years have shown us anything, it should be that "very simple small events can cause real havoc in our society". A few hooded youths play cat and mouse with the police: bang, thousands of burned cars put all of Paris into a complete state of paralysis, mandatory curfew and the entire system in shock and horror.

My first thought was: what if any really smart set of people really set their mind to it...how utterly and scarily trivial it would be, to disrupt the very fabric of life, to bring society to a dead stop?

The relative innocence and stable period of the last 50 years may spiral into a nearly inevitable exposure to real chaos. What if it isn't haphazard testosterone driven riots, where they cannibalize their own neighborhood, much like in L.A. in the 80s, but someone with real insight behind that criminal energy ? What if Slashdotters start musing aloud about "Gee, the L.A. water supply is rather simplistic, isn't it?" An Open Source crime web, a Wiki for real WTO opposition ? Hacking L.A. may be a lot easier than hacking IE.
That is basic banter over a beer in a bar, I don't even want to actually speculate what a serious set of brainiacs could conjure up. And I refuse to even give it any more print space here. However, the danger of such sad memes is what requires our attention!

In fact, I will broaden the specter still: its not violent crime and global terrorism I worry about, as much as the basic underpinning of our entire civilization coming apart, as such. No acts of malevolence, no horrible plans by evil dark forces, neither the singular "Bond Nemesis" kind, nor masses of religious fanatics. None of that needed... It is the glue that is coming apart to topple this tower. And no, I am not referring to "spiraling trillions of debt".

No, what I am referring to is a slow process I observed over the last 30 years, ever since in my teens I wondered "How would this world work, if everyone were like me ?" and realized: it wouldn't !

It was amazing to me that there were just enough people to make just enough shoes so that everyone can avoid walking barefoot. That there are people volunteering to spend day-in, day-out, being dentists, and lawyers and salesmen. Almost any "jobjob" I look at, I have the most sincere admiration for the tenacity of the people...how do they do it? It would drive me nuts after hours, let alone years...Who makes those shoes ?

That was the wondrous introspection in adolescent phases, searching for a place in the jigsaw puzzle.

But in recent years, the haunting question has come back to me: "How the hell does this world function at all? And does it, really ? I feel an alienation zapping through the channels, I can't find myself connecting with those groups of humanoids trouncing around MTV. Especially the glimpses of "real life": on daytime-courtroom-dramas or just looking at faces in the street. On every scale, the closer I observe it, the more the creeping realization haunts me: individuals, families, groups, neighborhoods, cities, states, countries... they all just barely hang in there, between debt and dysfunction. The whole planet looks like Any town with mini malls cutting up the landscape and just down the road it's all white trash with rusty car wrecks in the back yard. A huge Groucho Club I don't want to be a member of.

But it does go further: what is particularly disturbing to see is this desperate search for Individualism that has rampantly increased in the last decade or so.

Everyone suddenly needs to be so special, be utterly unique. So unique that they race off like lemmings to get 'even more individual' tattoos, branded cattle, with branded chains in every mall, converging on a blanded sameness world wide, but every rap singer with ever more gold chains in ever longer stretched limos is singing the tune: Don't be a loser! Don't be normal! The desperation with which millions of youngsters try to be that one-in-a-million professional ball player may have been just a "sad but silly factoid" for a long time.

But now the tables are turning: the anthill is relying on the behaviour of the ants to function properly. And that implies: the social behaviour, the role playing, taking defined tasks and follow them through.

What if each ant suddenly wants to be the queen? What if soldiering and nest building and cleaning chores is just not cool enough any more?

If AntTV shows them every day nothing but un-Ant behaviour...?

In my youth we were whining about what to do and how to do it, but in the end,all of my friends did become "normal" humans, orthopedics and lawyers, social workers, teachers... There were always a few that lived on the edges of normality, like ending up as television celebrities, but on the whole: they were perfectly reasonable ants. 1.8 children, 2.7 cars, 3.3 TVs...

Now: I am no longer confident that line will continue. If every honeymoon is now booked in Bali on a Visa card, and every kid in Borneo wants to play ball in NYC... can the network of society be pliable enough to accommodate total upheaval? And what if 2 billion Chinese and Indians raise a generation of kids staring 6+ hours a day into All American values they can never attain... being taunted with Hollywood movies of heroic acts and pathetic dysfunctionality, coupled with ever increasing violence and disdain for ethics or morals.

Seeing scenes of desperate youths in South American slums watching "Kill Bill" makes me think: this is just oxygen thrown into the fire... The ants will not play along much longer. The anthill will not survive if even a small fraction of the system is falling apart.

Couple that inane drive for "Super Individualism" (and the Quest for Coolness by an ever increasing group destined to fail miserably) with the scarily simple realization of how effective even a small set of desperate people can become, then add the obvious penchant for religious fanaticism and you have an ugly picture of the long term future.

So many curves that grow upwards towards limits, so many statistics that show increases and no way to turn around.

Many in this forum may speculate about infinite life spans, changing the speed of light, finding ways to decode consciousness, wormholes to other dimensions and finding grand unified theories.

To make it clear: I applaud that! "It does take all kinds".
Diversity is indeed one of the definitions of the meaning of life.
Edge IS Applied Diversity.

Those are viable and necessary questions for mankind as a whole, however: I believe we need to clean house, re-evaluate, redefine the priorities.

While we look at the horizon here in these pages, it is the very ground beneath us, that may be crumbling. The ant hill could really go to ant hell!  Next year, let's ask for good ideas. Really practical, serious, good ideas. "The most immediate positive global impact of any kind that can be achieved within one year?". How to envision Internet3 and Web3 as a real platform for a global brainstorming with 6+ billion potential participants.

This was not meant to sound like doom and gloom naysaying.  I see myself as a sincere optimist, but one who believes in realistic pessimism as a useful tool to initiate change.

Professor Emeritus, Senior Research Scientist, Department of Chemistry, New York University. Author, Planetary Dreams

We shall understand the origin of life within the next 5 years

Two very different groups will find this development dangerous, and for different reasons, but this outcome is best explained at the end of my discussion.

Just over a half century ago, in the spring of 1953, a famous experiment brought enthusiasm and renewed interest to this field. Stanley Miller, mentored by Harold Urey, demonstrated that a mixture of small organic molecules (monomers) could readily be prepared by exposing a mixture of simple gases to an electrical spark. Similar mixtures were found in meteorites, which suggested that organic monomers may be widely distributed in the universe. If the ingredients of life could be made so readily, then why could they not just as easily assort themselves to form cells?

In that same spring, however, another famous paper was published by James Watson and Francis Crick. They demonstrated that the heredity of living organisms was stored in a very large large molecule called DNA. DNA is a polymer, a substance made by stringing many smaller units together, as links are joined to form a long chain.

The clear connection between the structure of DNA and its biological function, and the geometrical beauty of the DNA double helix led many scientists to consider it to be the essence of life itself. One flaw remained, however, to spoil this picture. DNA could store information, but it could not reproduce itself without the assistance of proteins, a different type of polymer. Proteins are also adept at increasing the rate of (catalyzing) many other chemical reactions that are considered necessary for life. The origin of life field became mired in the "chicken-or-the egg" question. Which came first: DNA or proteins? An apparent answer emerged when it was found that another polymer, RNA (a cousin of DNA) could manage both heredity and catalysis. In 1986, Walter Gilbert proposed that life began with an "RNA World." Life started when an RNA molecule that could copy itself was formed, by chance, in a pool of its own building blocks.

Unfortunately, a half century of chemical experiments have demonstrated that nature has no inclination to prepare RNA, or even the building blocks (nucleotides) that must be linked together to form RNA. Nucleotides are not formed in Miller-type spark discharges, nor are they found in meteorites. Skilled chemists have prepared nucleotides in well-equipped laboratories, and linked them to form RNA, but neither chemists nor laboratories were present when life began on the early Earth. The Watson-Crick theory sparked a revolution in molecular biology, but it left the origin-of-life question at an impasse.

Fortunately, an alternative solution to this dilemma has gradually emerged: neither DNA nor RNA nor protein were necessary for the origin of life. Large molecules dominate the processes of life today, but they were not needed to get it started. Monomers themselves have the ability to support heredity and catalysis. The key requirement is that a suitable energy source be available to assist them in the processes of self-organization. A demonstration of the principle involved in the origin of life would require only that a suitable monomer mixture be exposed to an appropriate energy source in a simple apparatus. We could then observe the very first steps in evolution.

Some mixtures will work, but many others will fail, for technical reasons. Some dedicated effort will be needed in the laboratory to prove this point. Why have I specified five years for this discovery? The unproductive polymer-based paradigm is far from dead, and continues to consume the efforts of the majority of workers in the field. A few years will be needed to entice some of them to explore the other solution. I estimate that several years more (the time for a PhD thesis) might be required to identify a suitable monomer-energy combination, and perform a convincing demonstration.

Who would be disturbed if such efforts should succeed? Many scientists have been attracted by the RNA World theory because of its elegance and simplicity. Some of them have devoted decades of their career in efforts to prove it. They would not be pleased if Freeman Dyson's description proved to be correct: "life began with little bags, the precursors of cells, enclosing small volumes of dirty water containing miscellaneous garbage."

A very different group would find this development as dangerous as the theory of evolution. Those who advocate creationism and intelligent design would feel that another pillar of their belief system was under attack. They have understood the flaws in the RNA World theory, and used them to support their supernatural explanation for life's origin. A successful scientific theory in this area would leave one less task less for God to accomplish: the origin of life would be a natural (and perhaps frequent) result of the physical laws that govern this universe. This latter thought falls directly in line with the idea of Cosmic Evolution, which asserts that events since the Big Bang have moved almost inevitably in the direction of life. No miracle or immense stroke of luck was needed to get it started. If this should be the case, then we should expect to be successful when we search for life beyond this planet. We are not the only life that inhabits this universe.

Evolutionary Psychologist, University of New Mexico; Author, The Mating Mind

Runaway consumerism explains the Fermi Paradox

The story goes like this: Sometime in the 1940s, Enrico Fermi was talking about the possibility of extra-terrestrial intelligence with some other physicists. They were impressed that our galaxy holds 100 billion stars, that life evolved quickly and progressively on earth, and that an intelligent, exponentially-reproducing species could colonize the galaxy in just a few million years. They reasoned that extra-terrestrial intelligence should be common by now. Fermi listened patiently, then asked simply, "So, where is everybody?". That is, if extra-terrestrial intelligence is common, why haven't we met any bright aliens yet? This conundrum became known as Fermi's Paradox.

The paradox has become more ever more baffling. Over 150 extrasolar planets have been identified in the last few years, suggesting that life-hospitable planets orbit most stars. Paleontology shows that organic life evolved very quickly after earth's surface cooled and became life-hospitable. Given simple life, evolution shows progressive trends towards larger bodies, brains, and social complexity. Evolutionary psychology reveals several credible paths from simpler social minds to human-level creative intelligence. Yet 40 years of intensive searching for extra-terrestrial intelligence have yielded nothing. No radio signals, no credible spacecraft sightings, no close encounters of any kind.

So, it looks as if there are two possibilities. Perhaps our science over-estimates the likelihood of extra-terrestrial intelligence evolving. Or, perhaps evolved technical intelligence has some deep tendency to be self-limiting, even self-exterminating. After Hiroshima, some suggested that any aliens bright enough to make colonizing space-ships would be bright enough to make thermonuclear bombs, and would use them on each other sooner or later. Perhaps extra-terrestrial intelligence always blows itself up. Fermi's Paradox became, for a while, a cautionary tale about Cold War geopolitics.

I suggest a different, even darker solution to Fermi's Paradox. Basically, I think the aliens don't blow themselves up; they just get addicted to computer games. They forget to send radio signals or colonize space because they're too busy with runaway consumerism and virtual-reality narcissism. They don't need Sentinels to enslave them in a Matrix; they do it to themselves, just as we are doing today.

The fundamental problem is that any evolved mind must pay attention to indirect cues of biological fitness, rather than tracking fitness itself. We don't seek reproductive success directly; we seek tasty foods that tended to promote survival and luscious mates who tended to produce bright, healthy babies. Modern results: fast food and pornography. Technology is fairly good at controlling external reality to promote our real biological fitness, but it's even better at delivering fake fitness — subjective cues of survival and reproduction, without the real-world effects. Fresh organic fruit juice costs so much more than nutrition-free soda. Having real friends is so much more effort than watching Friends on TV. Actually colonizing the galaxy would be so much harder than pretending to have done it when filming Star Wars or Serenity.

Fitness-faking technology tends to evolve much faster than our psychological resistance to it. The printing press is invented; people read more novels and have fewer kids; only a few curmudgeons lament this. The Xbox 360 is invented; people would rather play a high-resolution virtual ape in Peter Jackson's King Kong than be a perfect-resolution real human. Teens today must find their way through a carnival of addictively fitness-faking entertainment products: MP3, DVD, TiVo, XM radio, Verizon cellphones, Spice cable, EverQuest online, instant messaging, Ecstasy, BC Bud. The traditional staples of physical, mental, and social development (athletics, homework, dating) are neglected. The few young people with the self-control to pursue the meritocratic path often get distracted at the last minute — the MIT graduates apply to do computer game design for Electronics Arts, rather than rocket science for NASA.

Around 1900, most inventions concerned physical reality: cars, airplanes, zeppelins, electric lights, vacuum cleaners, air conditioners, bras, zippers. In 2005, most inventions concern virtual entertainment — the top 10 patent-recipients are usually IBM, Matsushita, Canon, Hewlett-Packard, Micron Technology, Samsung, Intel, Hitachi, Toshiba, and Sony — not Boeing, Toyota, or Wonderbra. We have already shifted from a reality economy to a virtual economy, from physics to psychology as the value-driver and resource-allocator. We are already disappearing up our own brainstems. Freud's pleasure principle triumphs over the reality principle. We narrow-cast human-interest stories to each other, rather than broad-casting messages of universal peace and progress to other star systems.

Maybe the bright aliens did the same. I suspect that a certain period of fitness-faking narcissism is inevitable after any intelligent life evolves. This is the Great Temptation for any technological species — to shape their subjective reality to provide the cues of survival and reproductive success without the substance. Most bright alien species probably go extinct gradually, allocating more time and resources to their pleasures, and less to their children.

Heritable variation in personality might allow some lineages to resist the Great Temptation and last longer. Those who persist will evolve more self-control, conscientiousness, and pragmatism. They will evolve a horror of virtual entertainment, psychoactive drugs, and contraception. They will stress the values of hard work, delayed gratification, child-rearing, and environmental stewardship. They will combine the family values of the Religious Right with the sustainability values of the Greenpeace Left.

My dangerous idea-within-an-idea is that this, too, is already happening. Christian and Muslim fundamentalists, and anti-consumerism activists, already understand exactly what the Great Temptation is, and how to avoid it. They insulate themselves from our Creative-Class dream-worlds and our EverQuest economics. They wait patiently for our fitness-faking narcissism to go extinct. Those practical-minded breeders will inherit the earth, as like-minded aliens may have inherited a few other planets. When they finally achieve Contact, it will not be a meeting of novel-readers and game-players. It will be a meeting of dead-serious super-parents who congratulate each other on surviving not just the Bomb, but the Xbox. They will toast each other not in a soft-porn Holodeck, but in a sacred nursery.

Neuroscientist, Chairman, Board of Directors, Human Science Center and Department of Medical Psychology, Munich University, Germany; Author, Mindworks

My belief in science

Average life expectancy of a species on this globe is just a few million years. From an external point of view, it would be nothing special if humankind suddenly disappears. We have been here for sometime. With humans no longer around, evolutionary processes would have an even better chance to fill in all those ecological niches which have been created by human activities. As we change the world, and as thousands of species are lost every year because of human activities, we provide a new and productive environment for the creation of new species. Thus, humankind is very creative with respect to providing a frame for new evolutionary trajectories, and humankind would even be more creative, if it has disappeared altogether. If somebody (unfortunately not our descendents) would visit this globe some time later, they would meet many new species, which owe their existence the presence and the disappearance of humankind.

But this is not going to happen, because we are doing science. With science we apparently get a better understanding of basic principles in nature, we have a chance to improve quality of life, and we can develop means to extend the life expectancy of our species. Unfortunately, some of these scientific activities have a paradoxical effect resulting in a higher risk for a common disappearance. Maybe, science will not be so effective after all to prevent our disappearance.

Only now comes my dangerous idea as my (!) dangerous idea. It is not so difficult to come up with a dangerous scenario on a general level, but if one takes such a question also seriously on a personal level, one has to meditate an individual scenario. I am very grateful for this question formulated by Steven Pinker as it forced me to visit my episodic memory and to think about what has been and still is "my dangerous idea". Although nobody else might be interested in a personal statement, I say it anyway: My dangerous idea is my belief in science.

In all my research (in the field of temporal perception or visual processes) I have a basic trust in the scientific activities, and I actually believe the results I have obtained. And I believe the results of others. But why? I know that there so many unknown and unknowable variables that are part of the experimental setup and which cannot be controlled. How can I trust in spite of so many unknowables (does this word exist in English?)? Furthermore, can I really rely on my thinking, can I trust my eyes and ears? Can I be so sure about my scientific activities that I communicate with pride the results to others? If I look at the complexity of the brain, how is it possible that something reasonable comes out of this network? How is it possible that a face that I see or a thought that I have maintain their identity over time? If I have no access to what goes on in my brain, how can I be so proud, (how can anybody be so proud) about scientific achievements?

Evolutionary Biologist; Professor, Department of Ecology and Evolution, University of Chicago; Author (with H. Allen Orr), Speciation

Many behaviors of modern humans were genetically hard-wired (or soft-wired) in our distant ancestors by natural selection

For me, one idea that is dangerous and possibly true is an extreme form of evolutionary psychology — the view that many behaviors of modern humans were genetically hard-wired (or soft-wired) in our distant ancestors by natural selection.

The reason I say that this idea might be true is that we cannot be sure of the genetic and evolutionary underpinnings of most human behaviors. It is difficult or impossible to test many of the conjectures of evolutionary psychology. Thus, we can say only that behaviors such as the sexual predilections of men versus women, and the extreme competitiveness of males, are consistent with evolutionary psychology.

But consistency arguments have two problems. First, they are not hard scientific proof. Are we satisfied that sonnets are phallic extensions simply because some male poets might have used them to lure females? Such arguments fail to meet the normal standards of scientific evidence.

Second, as is well known, one can make consistency arguments for virtually every human behavior. Given the possibilities of kin selection (natural selection for behaviors that do no good for to their performers but are advantageous to their relatives) and reciprocal altruism, and our ignorance of the environments of our ancestors, there is no trait beyond evolutionary explanation. Indeed, there are claims for the evolutionary origin of even manifestly maladaptive behaviors, such as homosexuality, priestly celibacy, and extreme forms of altruism (e.g., self-sacrifice during wartime). But surely we cannot consider it scientifically proven that genes for homosexuality are maintained in human populations by kin selection. This remains possible but undemonstrated.

Nevertheless, much of human behavior does seem to conform to Darwinian expectations. Males are promiscuous and females coy. We treat our relatives better than we do other people. The problem is where to draw the line between those behaviors that are so obviously adaptive that no one doubts their genesis (e.g. sleeping and eating), those which are probably but not as obviously adaptive (e.g., human sexual behavior and our fondness for fats and sweets) and those whose adaptive basis is highly speculative (e.g., the origin of art and our love of the outdoors).

Although I have been highly critical of evolutionary psychology, I have not done so from political motives, nor do I think that the discipline is in principle misguided. Rather, I have been critical because evolutionary psychologists seem unwilling to draw lines between what can be taken as demonstrated and what remains speculative, making the discipline more of a faith than a science. This lack of rigor endangers the reputation of all of evolutionary biology, making our endeavors seem to be merely the concoction of ingenious stories. If we are truly to understand human nature, and use this knowledge constructively, we must distinguish the probably true from the possibly true.

So, why do I see evolutionary psychology as dangerous? I think it is because I am afraid to see myself and my fellow humans as mere marionettes dancing on genetic strings. I would like to think that we have immense freedom to better ourselves as individuals and to create a just and egalitarian society. Granted, genetics is not destiny, but neither are we completely free of our evolutionary baggage. Might genetics really hold a leash on our capacity to change? If so, then some claims of evolutionary psychology give us convenient but dangerous excuses for behaviors that seem unacceptable. It is all too easy, for example, for philandering males to excuse their behavior as evolutionarily justified. Evolutionary psychologists argue that it is possible to overcome our evolutionary heritage. But what if it is not so easy to take the Dawkinsian road and "rebel against the tyranny of the selfish replicators"?

Psychologist, Harvard University; Author, Wet Mind

A Science of the Divine?

Here's an idea that many academics may find unsettling and dangerous: God exists. And here's another idea that many religious people may find unsettling and dangerous: God is not supernatural, but rather part of the natural order. Simply stating these ideas in the same breath invites them to scrape against each other, and sparks begin to fly. To avoid such conflict, Stephen Jay Gould famously argued that we should separate religion and science, treating them as distinct "magisteria." But science leads many of us to try to understand all that we encounter with a single, grand and glorious overarching framework. In this spirit, let me try to suggest one way in which the idea of a "supreme being" can fit into a scientific worldview.

I offer the following not to advocate the ideas, but rather simply to illustrate one (certainly not the only) way that the concept of God can be approached scientifically.

1.0. First, here's the specific conception of God I want to explore: God is a "supreme being" that transcends space and time, permeates our world but also stands outside of it, and can intervene in our daily lives (partly in response to prayer).

2.0. A way to begin to think about this conception of the divine rests on three ideas:

2.1. Emergent properties. There are many examples in science where aggregates produce an entity that has properties that cannot be predicted entirely from the elements themselves. For example, neurons in large numbers produce minds; moreover, minds in large numbers produce economic, political, and social systems.

2.2. Downward causality. Events at "higher levels" (where emergent properties become evident) can in turn feed back and affect events at lower levels. For example, chronic stress (a mental event) can cause parts of the brain to become smaller. Similarly, an economic depression or the results of an election affect the lives of the individuals who live in that society.

2.3. The Ultimate Superset. The Ultimate Superset (superordinate set) of all living things may have an equivalent status to an economy or culture. It has properties that emerge from the interactions of living things and groups of living things, and in turn can feed back to affect those things and groups.

3.0. Can we conceive of God as an emergent property of all living things that can in turn affect its constituents? Here are some ways in which this idea is consistent with the nature of God, as outlined at the outset.

3.1. This emergent entity is "transcendent" in the sense that it exists in no specific place or time. Like a culture or an economy, God is nowhere, although the constituent elements occupy specific places. As for transcending time, consider this analogy: Imagine that 1/100th of the neurons in your brain were replaced every hour, and each old neuron programmed a new one so that the old one's functionality was preserved. After 100 hours your brain would be an entirely new organ — but your mind would continue to exist as it had been before. Similarly, as each citizen dies and is replaced by a child, the culture continues to exist (and can grow and develop, with a "life of its own"). So too with God. For example, in the story of Jacob's ladder, Jacob realizes "Surely the Lord is in this place, and I did not know it." (Genesis 28: 16) I interpret this story as illustrating that God is everywhere but nowhere. The Ultimate Superset permeates our world but also stands outside of (or, more specifically, "above") it.

3.2. The Ultimate Superset can affect our individual lives. Another analogy: Say that geese flying south for the winter have rather unreliable magnetic field detectors in their brains. However, there's a rule built into their brains that leads them to try to stay near their fellows as they fly. The flock as a whole would navigate far better than any individual bird, because the noise in the individual bird brain navigation systems would cancel out. The emergent entity — the flock — in turn would affect the individual geese, helping them to navigate better than they could on their own.

3.3. When people pray to the Lord, they beseech intervention on their or others' behalf. The view that I've been outlining invites us to think of the effects of prayer as akin to becoming more sensitive to the need to stay close to the other birds in the flock: By praying, one can become more sensitive to the emergent "supreme being." Such increased sensitivity may imply that one can contribute more strongly to this emergent entity.

By analogy, it's as if one of those geese became aware of the "keep near" rule, and decided to nudge the other birds in a particular direction — which thereby allows it to influence the flock's effect on itself. To the extent that prayer puts one closer to God, one's plea for intervention will have a larger impact on the way that The Ultimate Superset exerts downward causality. But note that, according to this view, God works rather slowly. Think of dropping rocks in a pond: it takes time for the ripples to propagate and eventually be reflected back from the edge, forming interference patterns in the center of the pond.

4.0. A crucial idea in monotheistic religions is that God is the Creator. The present approach may help us begin to grapple with this idea, as follows.

4.1. First, consider each individual person. The environment plays a key role in creating who and what we are because there are far too few genes to program every aspect of our brains. For example, when you were born, your genes programmed many connections in your visual areas, but did not specify the precise circuits necessary to determine how far away objects are. As an infant, the act of reaching for an object tuned the brain circuits that estimate how far away the object was from you.

Similarly, your genes graced you with the ability to acquire language, but not with a specific language. The act of acquiring a language shapes your brain (which in turn may make it difficult to acquire another language, with different sounds and grammar, later in life). Moreover, cultural practices configure the brains of members of the culture. A case in point: the Japanese have many forms of bowing, which are difficult for a Westerner to master relatively late in life; when we try to bow, we "bow with an accent."

4.2. And the environment not only played an essential role in how we developed as children, but also plays a continuing role in how we develop over the course of our lives as adults. The act of learning literally changes who and what we are.

4.3. According to this perspective, it's not just negotiating the physical world and sociocultural experience that shape the brain: The Ultimate Superset — the emergent property of all living things — affects all of the influences that "make us who and what we are," both as we develop during childhood and continue to learn and develop as adults.

4.4. Next, consider our species. One could try to push this perspective into a historical context, and note that evolution by natural selection reflects the effects of interactions among living things. If so, then the emergent properties of such interactions could feed back to affect the course of evolution itself.

In short, it is possible to begin to view the divine through the lens of science. But such reasoning does no more than set the stage; to be a truly dangerous idea, this sort of proposal must be buttressed by the results of empirical test. At present, my point is not to convince, but rather to intrigue. As much as I admired Stephen Jay Gould (and I did, very much), perhaps he missed the mark on this one. Perhaps there is a grand project waiting to be launched, to integrate the two great sources of knowledge and belief in the world today — science and religion.

CEO, Biotechonomy; Founding Director, Harvard Business School's Life Sciences Project; Author, The Untied States of America

Technology can untie the U.S.

Everyone grows and dies; same is true of countries. The only question is how long one postpones the inevitable. In the case of some countries, life spans can be very long, so it is worth asking is the U.S. in adolescence, middle age, or old age? Do science and technology accelerate or offset demise? And finally "how many stars will be in the U.S. flag in fifty years?"

There has yet to be a single U.S. president buried under the same flag he was born under, yet we oft take continuity for granted. Just as almost no newlyweds expect to divorce, citizens rarely assume their beloved country, flag and anthem might end up an exhibit in an archeology museum. But countries rich and poor, Asian, African, and European have been untying time and again. In the last five decades the number of UN members has tripled. This trend goes way beyond the de-colonization of the 1960s, and it is not exclusive to failed states; it is a daily debate within the United Kingdom, Italy, France, Belgium, the Netherlands, Austria, and many others.

So far the Americas has remained mostly impervious to these global trends, but, even if in God you trust, there are no guarantees. Over the next decade waves of technology will wash over the U.S. Almost any applied field you care to look at promises extraordinary change, opportunities, and challenges. (Witness the entries in this edition of Edge). How counties adapt to massive, rapid upheaval will go a long way towards determining the eventual outcome. To paraphrase Darwin, it is not the strongest, not the largest, that survive rather it is those best prepared to cope with change.

It is easy to argue that the U.S. could be a larger more powerful country in fifty years. But it is also possible that, like so many other great powers, it could begin to unravel and untie. This is not something that depends on what we do decide to do fifty years hence; to a great extent it depends on what we choose to do, or choose to ignore, today. There are more than a few worrisome trends.

Future ability to generate wealth depends on techno-literacy. But educational excellence, particularly in grammar and high schools is far from uniform, and it is not world class. Time and again the U.S. does poorly, particularly in regards to math and science, when compared with its major trading partners. Internally, there are enormous disparities between schools and between the number of students that pass state competency exams and what federal tests tell us about the same students. There are also large gaps in techno literacy between ethnic groups. By 2050 close to 40% of the U.S. population will be Hispanic and African American. These groups receive 3% of the PhDs in math and science today. How we prepare kids for a life sciences, materials, robotics, IT, and nanotechnology driven world is critical. But we currently invest $22,000 federal dollars in those over 65 and just over $2,000 in those under sixteen...

As ethnic, age, and regional gaps in the ability to adapt increase there are many wary and frustrated by technology, open borders, free trade, and smart immigrants. Historically, when others use newfangled ways to leap ahead, it can lead to a conservative response. This is likeliest within those societies and groups thant have the most to lose, often among those who have been the most successful. One often observes a reflexive response: stop the train; I want to get off. Or, as the Red Sox now say, just wait till last year. No more teaching evolution, no more research into stem cells, no more Indian or Chinese or Mexican immigrants, no matter how smart or hardworking they might be. These individual battles are signs of a creeping xenophobia, isolationism, and fury.

Within the U.S. there are many who are adapting very successfully. They tend to concentrate in a very few zip codes, life science clusters like 92121(between Salk, Scripps, and UCSD) and techno-empires like 02139 (MIT). Most of the nation's wealth and taxes are generated by a few states and, within these states, within in a few square miles. It is those who live in these areas that are most affronted by restrictions on research, the lack of science literate teenagers, and the reliance on God instead of science.

Politicians well understand these divides and they have gerrymandered their own districts to reflect them. Because competitive congressional elections are rarer today than turnovers within the Soviet Politburo, there is rarely an open debate and discussion as to why other parts of the country act and think so differently. The Internet and cable further narrowcast news and views, tending to reinforce what one's neighbors and communities already believe. Positions harden. Anger at "the others" mounts.

Add a large and mounting debt to this equation, along with politicized religion, and the mixture becomes explosive. The average household now owes over $88,000 and the present value of what we have promised to pay is now about $473,000. There is little willingness within Washington to address a mounting deficit, never mind the current account imbalance. Facing the next electoral challenge, few seem to remember the last act of many an empire is to drive itself into bankruptcy.

Sooner or later we could witness some very bitter arguments about who gets and who pays. In developed country after developed country, it is often the richest, not the ethnically or religiously repressed, that first seek autonomy and eventually dissolution. In this context it is worth recalling that New England, not the South, has been the most secession prone region. As the country expanded, New Englanders attempted to include the right to untie into the constitution; the argument was that as this great country expanded South and West they would lose control over their political and economic destiny. Perhaps this is what led to four separate attempts to untie the Union.

When we assume stability and continuity we can wake up to irreconcilable differences. Science and a knowledge driven economy can allow a few folks to build powerful and successful countries very quickly, witness Korea, Taiwan, Singapore, Ireland, but changes of this magnitude can also bury or split the formerly great who refuse to adapt, as well as those who practice bad governance. If we do not begin to address some current divides quickly we could live to see an Un-Tied States of America.

Computer Scientist, Brandeis University

Science as just another Religion

We scientists like to think that our "way of knowing" is special. Instead of holding beliefs based on faith in invisible omniscient deities, or parchments transcribed from oral cultures, we use the scientific method to discover and know. Truth may be eternal, but human knowledge of that truth evolves over time, as new questions are asked, data is recorded, hypotheses are tested, and replication and refutation mechanisms correct the record.

So it is a very dangerous idea to consider Science as just another Religion. It's not my idea, but one I noticed growing in a set of Lakovian Frames within the Memesphere.

One of the frame is that scientists are doom and gloom prophets. For example, at a recent popular technology conference, a parade of speakers spoke about the threats of global warming, the sea level rising by 18 feet and destroying cities, more category 5 hurricanes, etc. It was quite a reversal from the positivistic techno-utopian promises of miraculous advances in medicine, computers, and weaponry that have allowed science to bloom in the late 20th century. A friend pointed out that — in the days before Powerpoint — these scientists might be wearing sandwich-board signs saying "The End is Near!"

Another element in the framing of science as a religion is the response to evidence-based policy. Scientists who do take political stands on "moral" issues such as stem-cell research, death penalty, nuclear weapons, global warming, etc., can be sidelined as atheists, humanists, or agnostics who have no moral or ethical standing outside their narrow specialty (as compared to, say, televangelist preachers.)

A third, and the most nefarious frame, casts theory as one opinion among others which should represented out of fairness or tolerance. This is the subterfuge used by Intelligent Design Creationists.

We may believe in the separation of church and state, but that firewall has fallen. Science and Reason are losing political battles to Superstition and Ignorance. Politics works by rewarding friends and punishing enemies, and while our individual votes may be private, exit polls have proven that Science didn't vote for the incumbent.

There seem to be three choices going forward: Reject, Accommodate, or Embrace.

One path is to go on an attack on religion in the public sphere. In his book End of Faith, Sam Harris points out that humoring people who believe in God is like humoring people who believe that "a diamond [] the size of a refrigerator" is buried in their back yard. There is a fine line between pushing God out of our public institutions and repeating religious intolerance of regimes past.

A second is to embrace Faith-Based Science. Since, from the perspective of government, research just another special interest feeding at the public trough, we should change our model to be more accommodating to political reality. Research is already sold like highway construction projects, with a linear accelerator for your state and a supercomputer center for mine, all done through direct appropriations. All that needs to change is the justifications for such spending.

How would Faith-Based Science work? Well, Physics could sing the psalm that Perpetual Motion would solve the energy crisis, thereby triggering a $500 billion program in free energy machines. (Of course, God is on our side to repeal the Second Law of Thermodynamics!) Astronomy could embrace Astrology and do grassroots PR through Daily Horoscopes to gain mass support for a new space program. In fact, an anti-gravity initiative could pass today if it were spun as a repeal of the "heaviness tax." Using the renaming principle, the SETI program can be re-legalized and brought back to life as the "Search for God" project.

Finally, the third idea is to actually embrace this dangerous idea and organize a new open-source spiritual and moral movement. I think a new, greener religion, based on faith in the Gaia Hypothesis and an 11th commandment to "Protect the Earth" could catch on, especially if welcoming to existing communities of faith. Such a movement could be a new pulpit from which the evidence-based silent majority can speak with both moral force and evangelical fervor about issues critical to the future of our planet.

< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2006 by
Edge Foundation, Inc
All Rights Reserved.