< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12




Printer version


Alun Anderson

Philip W. Anderson

Scott Atran

Mahzarin Banaji

Simon Baron-Cohen

Samuel Barondes

Gregory Benford

Jesse Bering

Jeremy Bernstein

Jamshed Bharucha

Susan Blackmore

Paul Bloom

David Bodanis

Stewart Brand

Rodney Brooks

David Buss

Philip Campbell

Leo Chalupa

Andy Clark

Gregory Cochran
Jerry Coyne

M. Csikszentmihalyi

Richard Dawkins

Paul Davies

Stanislas Deheane

Daniel C. Dennett
Keith Devlin
Jared Diamond
Denis Dutton
Freeman Dyson
George Dyson
Juan Enriquez

Paul Ewald

Todd Feinberg

Eric Fischl

Helen Fisher

Richard Foreman

Howard Gardner

Joel Garreau

David Gelernter

Neil Gershenfeld

Danie Gilbert

Marcelo Gleiser

Daniel Goleman

Brian Goodwin

Alison Gopnik

April Gornik

John Gottman

Brian Greene

Diane F. Halpern

Haim Harari

Judith Rich Harris

Sam Harris

Marc D. Hauser

W. Daniel Hillis

Donald Hoffman

Gerald Holton
John Horgan

Nicholas Humphrey

Piet Hut

Marco Iacoboni

Eric R. Kandel

Kevin Kelly

Bart Kosko

Stephen Kosslyn
Kai Krause

Ray Kurzweil

Jaron Lanier

David Lykken

Gary Marcus
Lynn Margulis
Thomas Metzinger
Geoffrey Miller

Oliver Morton

David G. Myers

Randolph Nesse

Richard E. Nisbett

Tor Nørretranders

James O'Donnell

John Allen Paulos

Irene Pepperberg

Clifford Pickover

Steven Pinker

David Pizarro

Jordan Pollack

Ernst Pöppel

Carolyn Porco

Robert Provine

VS Ramachandran

Martin Rees

Matt Ridley

Carlo Rovelli

Rudy Rucker

Douglas Rushkoff

Karl Sabbagh

Roger Schank

Scott Sampson

Charles Seife

Terrence Sejnowski

Martin Seligman

Robert Shapiro
Rupert Sheldrake

Michael Shermer

Clay Shirky

Barry Smith

Lee Smolin

Dan Sperber

Paul Steinhardt

Steven Strogatz
Leonard Susskind

Timothy Taylor

Frank Tipler

Arnold Trehub

Sherry Turkle

J. Craig Venter

Philip Zimbardo

Evolutionary Biologist; Director, Program in Evolutionary Medicine, University of Louisville; Author, Plague Time

A New Golden Age of Medicine

My dangerous idea is that we have in hand most of the information we need to facilitate a new golden age of medicine. And what we don't have in hand we can get fairly readily by wise investment in targeted research and intervention. In this golden age we should be able to prevent most debilitating diseases in developed and undeveloped countries within a relatively short period of time with much less money than is generally presumed. This is good news. Why is it dangerous?

One array of dangers arises because ideas that challenge the status quo threaten the livelihood of many. When the many are embedded in powerful places the threat can be stifling, especially when a lot of money and status are at stake. So it is within the arena of medical research and practice. Imagine what would happen if the big diseases — cancers, arteriosclerosis, stroke, diabetes — were largely prevented.

Big pharmas would become small because the demand for prescription drugs would drop. The prestige of physicians would drop because they would no longer be relied upon to prolong life. The burgeoning industry of biomedical research would shrink because governmental and private funding for this research would diminish. Also threatened would be scientists whose sense of self-worth is built upon the grant dollars they bring in for discovering miniscule parts of big puzzles. Scientists have been beneficiaries of the lack of progress in recent decades, which has caused leaders such as the past head of NIH, Harold Varmus, to declare that what is needed is more basic research. But basic research has not generated many great advancements in the prevention or cure of disease in recent decades.

The major exception is in the realm of infectious disease where many important advancements were generated from tiny slices of funding. The discovery that peptic ulcers are caused by infections that can be cured with antibiotics is one example. Another is the discovery that liver cancer can often be prevented by a vaccine against the hepatitis B virus or by screening blood for hepatitis B and C viruses.

The track record of the past few decades shows that these examples are not quirks. They are part of a trend that goes back over a century to the beginning of the germ theory itself. And the accumulating evidence supporting infectious causation of big bad diseases of modern society is following the same pattern that occurred for diseases that have been recently accepted as caused by infection.

The process of acceptance typically occurs over one or more decades and accords with Schopenhauer's generalization about the establishment of truth: it is first ridiculed, then violently opposed, and finally accepted as being self-evident. Just a few groups of pathogens seem to be big players: streptococci, Chlamydia, some bacteria of the oral cavity, hepatitis viruses, and herpes viruses. If the correlations between these pathogens and the big diseases of wealthy countries does in fact reflect infectious causation, effective vaccines against these pathogens could contribute in a big way to a new golden age of medicine that could rival the first half of the 20th century.

The transition to this golden age, however, requires two things: a shift in research effort to identifying the pathogens that cause the major diseases and development of effective interventions against them. The first would be easy to bring about by restructuring the priorities of NIH — where money goes, so go the researchers. The second requires mechanisms for putting in place programs that cannot be trusted to the free market for the same kinds of reasons that Adam Smith gave for national defense. The goals of the interventions do not mesh nicely with the profit motive of the free market. Vaccines, for example, are not very profitable.

Pharmas cannot make as much money by selling one vaccine per person to prevent a disease as they can selling a patented drug like Vioxx which will be administered day after day, year after year to treat symptoms of an illness that is never cured. And though liability issues are important for such symptomatic treatment, the pharmas can argue forcefully that drugs with nasty side effects provide some benefit even to those who suffer most from the side effects because the drugs are given not to prevent an illness but rather to people who already have an illness. This sort of defense is less convincing when the victim is a child who developed permanent brain damage from a rare complication of a vaccine that was given to protect them against a chronic illness that they might have acquired decades later.

Another part of this vision of a new golden age will be the ability to distinguish real threats from pseudo-threats. This ability will allow us to invest in policy and infrastructure that will protect people against real threats without squandering resources and destroying livelihoods in efforts to protect against pseudo-threats. Our present predicament on this front is far from this ideal.

Today experts on infectious diseases and institutions entrusted to protect and improve human health sound the alarm in response to each novel threat. The current fears over a devastating pandemic of bird flu is a case in point. Some of the loudest voices offer a simplistic argument: failing to prepare for the worst-case scenarios is irresponsible and dangerous. This criticism has been recently leveled at me and others who question expert proclamations, such as those from the World Health Organization and the Centers for Disease Control.

These proclamations inform us that H5N1 bird flu virus poses an imminent threat of an influenza pandemic similar to or even worse than the 1918 pandemic. I have decreased my popularity in such circles by suggesting that the threat of this scenario is essentially nonexistent. In brief I argue that the 1918 influenza viruses evolved their unique combination of high virulence and high transmissibility in the conditions at the Western Front of World War I.

By transporting contagious flu patients into a series of tightly packed groups of susceptible individuals, personnel fostered transmission from people who were completely immobilized by their illness. Such conditions must have favored the predator-like variants of the influenza virus; these variants would have a competitive edge because they could ruthlessly exploit a person for their own replication and still get transmitted to large numbers of susceptible individuals.

These conditions have not recurred in human populations since then and, accordingly, we have never had any outbreaks of influenza viruses that have been anywhere near as harmful as those that emerged at the Western Front. So long as we do not allow such conditions to occur again we have little to fear from a reevolution of such a predatory virus.

The fear of a 1918 style pandemic has fueled preparations by a government which, embarrassed by its failure to deal adequately with the damage from Katrina, seems determined to prepare for any perceived threat to save face. I would have no problem with the accusation of irresponsibility if preparations for a 1918 style pandemic were cost free. But they are not.

The $7 billion that the Bush administration is planning as a downpayment for pandemic preparedness has to come from somewhere. If money is spent to prepare for an imaginary pandemic, our progress could be impeded on other fronts that could lead to or have already established real improvements in public health.

Conclusions about responsibility or irresponsibility of this argument require that the threat from pandemic influenza be assessed relative to the damage that results from the procurement of the money from other sources. The only reliable evidence of the damage from pandemic influenza under normal circumstances is the experience of the two pandemics that have occurred since 1918, one in 1957 and the other in 1968. The mortality caused by these pandemics was one-tenth to one-hundredth the death toll from the 1918 pandemic.

We do need to be prepared for an influenza pandemic of the normal variety, just as we needed to be prepared for category 5 hurricanes in the Gulf of Mexico. If possible our preparations should allow us to stop an incipient pandemic before it materializes. In contrast with many of the most vocal experts I do not conclude that our surveillance efforts will be quickly overwhelmed by a highly transmissible descendent of the influenza virus that has generated the most recent fright (dubbed H5N1). The transition of the H5N1 virus to a pandemic virus would require evolutionary change.

The dialogue on this matter, however, continues to neglect the primary mechanism of the evolutionary change: natural selection. Instead it is claimed that H5N1 could mutate to become a full-fledged human virus that is both highly transmissible and highly lethal. Mutation provides only the variation on which natural selection acts. We must consider natural selection if we are to make meaningful assessments of the danger posed by the H5N1 virus.

The evolution of the 1918 virus was gradual, and both evidence and theory lead to the conclusion that any evolution of increased transmissibility of H5N1 from human to human will be gradual, as it was with SARS. With surveillance we can detect such changes in humans and intervene to stop further spread as was done with SARS. We do not need to trash the economy of southeast asia each year to accomplish this.

The dangerous vision of a golden age does not leave the poor countries behind. As I have discussed in my articles and books, we should be able to control much of the damage caused by the major killers in poor countries by infrastructural improvements that not only reduce the frequency of infection but also cause the infectious agents to evolve toward benignity.

This integrated approach offers the possibility to remodel our current efforts against the major killers — AIDS, malaria, tuberculosis, dysentery and the like. We should be able to move from just holding ground to institution of the changes that created the freedom from acute infectious diseases that have been enjoyed by inhabitants of rich countries over the past century.

Dangerous indeed! Excellent solutions are often dangerous to the status quo because they they work. One measure of danger to some but success to the general population is the extent to which highly specialized researchers, physicians, and other health care workers will need to retrain, and the extent to which hospitals and pharmaceutical companies will need to downsize. That is what happens when we introduce excellent solutions to health problems. We need not be any more concerned about these difficulties than the loss of the iron lung industry and the retraining of polio therapists and researchers in the wake of the Salk vaccine.

Psychologist, University of Arkansas

Science will never silence God

With each meticulous turn of the screw in science, with each tightening up of our understanding of the natural world, we pull more taut the straps over God's muzzle. From botany to bioengineering, from physics to psychology, what is science really but true Revelation — and what is Revelation but the negation of God? It is a humble pursuit we scientists engage in: racing to reality. Many of us suffer the harsh glare of the American theocracy, whose heart still beats loud and strong in this new year of the 21st century. We bravely favor truth, in all its wondrous, amoral, and 'meaningless' complexity over the singularly destructive Truth born of the trembling minds of our ancestors. But my dangerous idea, I fear, is that no matter how far our thoughts shall vault into the eternal sky of scientific progress, no matter how dazzling the effects of this progress, God will always bite through his muzzle and banish us from the starry night of humanistic ideals.

Science is an endless series of binding and rebinding his breath; there will never be a day when God does not speak for the majority. There will never be a day even when he does not whisper in the most godless of scientists' ears. This is because God is not an idea, nor a cultural invention, not an 'opiate of the masses' or any such thing; God is a way of thinking that was rendered permanent by natural selection.

As scientists, we must toil and labor and toil again to silence God, but ultimately this is like cutting off our ears to hear more clearly. God too is a biological appendage; until we acknowledge this fact for what it is, until we rear our children with this knowledge, he will continue to howl his discontent for all of time.

Editor-in Chief, Nature

Scientists and governments developing public engagement about science and technology are missing the point

This turns out to be true in cases where there are collapses in consensus that have serious societal consequences. Whether in relation to climate change, GM crops or the UK's triple vaccine for measles, mumps and rubella, alternative science networks develop amongst people who are neither ignorant nor irrational, but have perceptions about science, the scientific literature and its implications that differ from those prevailing in the scientific community. These perceptions and discussions may be half-baked, but are no less powerful for all that, and carry influence on the internet and in the media. Researchers and governments haven't yet learned how to respond to such "citizen's science". Should they stop explaining and engaging? No. But they need also to understand better the influences at work within such networks — often too dismissively stereotyped — at an early stage in the debate in order to counter bad science and minimize the impacts of falsehoods.

Psychologist, Yale University; Author, Descartes' Baby

There are no souls

I am not concerned here with the radical claim that personal identity, free will, and consciousness do not exist. Regardless of its merit, this position is so intuitively outlandish that nobody but a philosopher could take it seriously, and so it is unlikely to have any real-world implications, dangerous or otherwise.

Instead I am interested in the milder position that mental life has a purely material basis. The dangerous idea, then, is that Cartesian dualism is false. If what you mean by "soul" is something immaterial and immortal, something that exists independently of the brain, then souls do not exist. This is old hat for most psychologists and philosophers, the stuff of introductory lectures. But the rejection of the immaterial soul is unintuitive, unpopular, and, for some people, downright repulsive.

In the journal "First Things", Patrick Lee and Robert P. George
outline some worries from a religious perspective.

"If science did show that all human acts, including conceptual thought and free choice, are just brain processes,... it would mean that the difference between human beings and other animals is only superficial-a difference of degree rather than a difference in kind; it would mean that human beings lack any special dignity worthy of special respect. Thus, it would undermine the norms that forbid killing and eating human beings as we kill and eat chickens, or enslaving them and treating them as beasts of burden as we do horses or oxen."

The conclusions don't follow. Even if there are no souls, humans might differ from non-human animals in some other way, perhaps with regard to the capacity for language or abstract reasoning or emotional suffering. And even if there were no difference, it would hardly give us license to do terrible things to human beings. Instead, as Peter Singer and others have argued, it should make us kinder to non-human animals. If a chimpanzee turned out to possess the intelligence and emotions of a human child, for instance, most of us would agree that it would be wrong to eat, kill, or enslave it.

Still, Lee and George are right to worry that giving up on the soul means giving up on a priori distinction between humans and other creatures, something which has very real consequences. It would affect as well how we think about stem-cell research and abortion, euthenasia, cloning, and cosmetic psychopharmacology. It would have substantial implications for the legal realm — a belief in immaterial souls has led otherwise sophisticated commentators to defend a distinction between actions that we do and actions that our brains do. We are responsible only for the former, motivating the excuse that Michael Gazzaniga has called, "My brain made me do it." It has been proposed, for instance, that if a pedophile's brain shows a certain pattern of activation while contemplating sex with a child, he should not be viewed as fully responsible for his actions. When you give up on the soul, and accept that all actions correspond to brain activity, this sort of reasoning goes out the window.

The rejection of souls is more dangerous than the idea that kept us so occupied in 2005 — evolution by natural selection. The battle between evolution and creationism is important for many reasons; it is
where science takes a stand against superstition. But, like the origin of the universe, the origin of the species is an issue of great intellectual importance and little practical relevance. If everyone were to become a sophisticated Darwinian, our everyday lives would change very little. In contrast, the widespread rejection of the soul would have profound moral and legal consequences. It would also require people to rethink what happens when they die, and give up the idea (held by about 90% of Americans) that their souls will survive the death of their bodies and ascend to heaven. It is hard to get more dangerous than that.

Psychologist, University of Texas, Austin; Author, The Murderer Next Door: Why the Mind is Designed to Kil

The Evolution of Evil

When most people think of torturers, stalkers, robbers, rapists, and murderers, they imagine crazed drooling monsters with maniacal Charles Manson-like eyes. The calm normal-looking image starring back at you from the bathroom mirror reflects a truer representation. The dangerous idea is that all of us contain within our large brains adaptations whose functions are to commit despicable atrocities against our fellow humans — atrocities most would label evil.

The unfortunate fact is that killing has proved to be an effective solution to an array of adaptive problems in the ruthless evolutionary games of survival and reproductive competition: Preventing injury, rape, or death; protecting one's children; eliminating a crucial antagonist; acquiring a rival's resources; securing sexual access to a competitor's mate; preventing an interloper from appropriating one's own mate; and protecting vital resources needed for reproduction.

The idea that evil has evolved is dangerous on several counts. If our brains contain psychological circuits that can trigger murder, genocide, and other forms of malevolence, then perhaps we can't hold those who commit carnage responsible: "It's not my client's fault, your honor, his evolved homicide adaptations made him do it." Understanding causality, however, does not exonerate murderers, whether the tributaries trace back to human evolution history or to modern exposure to alcoholic mothers, violent fathers, or the ills of bullying, poverty, drugs, or computer games. It would be dangerous if the theory of the evolved murderous mind were misused to let killers free.

The evolution of evil is dangerous for a more disconcerting reason. We like to believe that evil can be objectively located in a particular set of evil deeds, or within the subset people who perpetrate horrors on others, regardless of the perspective of the perpetrator or victim. That is not the case. The perspective of the perpetrator and victim differ profoundly. Many view killing a member of one's in-group, for example, to be evil, but take a different view of killing those in the out-group. Some people point to the biblical commandment "thou shalt not kill" as an absolute. Closer biblical inspection reveals that this injunction applied only to murder within one's group.

Conflict with terrorists provides a modern example. Osama bin Laden declared: "The ruling to kill the Americans and their allies — civilians and military — is an individual duty for every Muslim who can do it in any country in which it is possible to do it." What is evil from the perspective of an American who is a potential victim is an act of responsibility and higher moral good from the terrorist's perspective. Similarly, when President Bush identified an "axis of evil," he rendered it moral for Americans to kill those falling under that axis — a judgment undoubtedly considered evil by those whose lives have become imperiled.

At a rough approximation, we view as evil people who inflict massive evolutionary fitness costs on us, our families, or our allies. No one summarized these fitness costs better than the feared conqueror Genghis Khan (1167-1227): "The greatest pleasure is to vanquish your enemies, to chase them before you, to rob them of their wealth, to see their near and dear bathed in tears, to ride their horses and sleep on the bellies of their wives and daughters."

We can be sure that the families of the victims of Genghis Khan saw him as evil. We can be just as sure that his many sons, whose harems he filled with women of the conquered groups, saw him as a venerated benefactor. In modern times, we react with horror at Mr. Khan describing the deep psychological satisfaction he gained from inflicting fitness costs on victims while purloining fitness fruits for himself. But it is sobering to realize that perhaps half a percent of the world's population today are descendants of Genghis Khan.

On reflection, the dangerous idea may not be that murder historically has been advantageous to the reproductive success of killers; nor that we all house homicidal circuits within our brains; nor even that all of us are lineal descendants of ancestors who murdered. The danger comes from people who refuse to recognize that there are dark sides of human nature that cannot be wished away by attributing them to the modern ills of culture, poverty, pathology, or exposure to media violence. The danger comes from failing to gaze into the mirror and come to grips the capacity for evil in all of us.

Neuroscientist; Director, Center for Brain and Cognition, University of California, San Diego; Author, A Brief Tour of Human Consciousness

Francis Crick's "Dangerous" Idea

I am a brain, my dear Watson, and the rest of me is a mere appendage.
— Sherlock Holmes

An idea that would be "dangerous if true" is what Francis Crick referred to as "the astonishing hypothesis"; the notion that our conscious experience and sense of self is based entirely on the activity of a hundred billion bits of jelly — the neurons that constitute the brain. We take this for granted in these enlightened times but even so it never ceases to amaze me.

Some scholars have criticized Cricks tongue-in-cheek phrase (and title of his book) on the grounds that the hypothesis he refers to is "neither astonishing nor a hypothesis". (Since we already know it to be true) Yet the far reaching philosophical, moral and ethical dilemmas posed by his hypothesis have not been recognized widely enough. It is in many ways the ultimate dangerous idea .

Lets put this in historical perspective.

Freud once pointed out that the history of ideas in the last few centuries has been punctuated by "revolutions" major upheavals of thought that have forever altered our view of ourselves and our place in the cosmos.

First there was the Copernican system dethroning the earth as the center of the cosmos.

Second was the Darwinian revolution; the idea that far from being the climax of "intelligent design" we are merely neotonous apes that happen to be slightly cleverer than our cousins.

Third, the Freudian view that even though you claim to be "in charge" of your life, your behavior is in fact governed by a cauldron of drives and motives of which you are largely unconscious.

And fourth, the discovery of DNA and the genetic code with its implication (to quote James Watson) that "There are only molecules. Everything else is sociology".

To this list we can now add the fifth, the "neuroscience revolution" and its corollary pointed out by Crick — the "astonishing hypothesis" — that even our loftiest thoughts and aspirations are mere byproducts of neural activity. We are nothing but a pack of neurons.

If all this seems dehumanizing, you haven't seen anything yet.

[Editor's Note: An lengthly essay by Ramachandran on this subject is scheduled for publication by Edge in January.]

Ophthalmologist and Neurobiologist, University of California, Davis

A 24-hour period of absolute solitude

Our brains are constantly subjected to the demands of multi-tasking and a seemingly endless cacophony of information from diverse sources. Cell phones, emails, computers, and cable television are omnipresent, not to mention such archaic venues as books, newspapers and magazines.

This induces an unrelenting barrage of neuronal activity that in turn produces long-lasting structural modification in virtually all compartments of the nervous system. A fledging industry touts the virtues of exercising your brain for self-improvement. Programs are offered for how to make virtually any region of your neocortex a more efficient processor. Parents are urged to begin such regimes in preschool children and adults are told to take advantage of their brain's plastic properties for professional advancement. The evidence documenting the veracity for such claims is still outstanding, but one thing is clear. Even if brain exercise does work, the subsequent waves of neuronal activities stemming from simply living a modern lifestyle are likely to eradicate the presumed hard-earned benefits of brain exercise.

My dangerous idea is that what's needed to attain optimal brain performance — with or without prior brain exercise — is a 24-hour period of absolute solitude. By absolute solitude I mean no verbal interactions of any kind (written or spoken, live or recorded) with another human being. I would venture that a significantly higher proportion of people reading these words have tried skydiving than experienced one day of absolute solitude.

What to do to fill the waking hours? That's a question that each person would need to answer for him/herself. Unless you've spent time in a monastery or in solitary confinement it's unlikely that you've had to deal with this issue. The only activity not proscribed is thinking. Imagine if everyone in this country had the opportunity to do nothing but engage in uninterrupted thought for one full day a year!

A national day of absolute solitude would do more to improve the brains of all Americans than any other one-day program. (I leave it to the lawmakers to figure out a plan for implementing this proposal.)The danger stems from the fact that a 24 period for uninterrupted thinking could cause irrevocable upheavals in much of what our society currently holds sacred.But whether that would improve our present state of affairs cannot be guaranteed.

Genomics Researcher; Founder & President, J. Craig Venter Science Foundation

Revealing the genetic basis of personality and behavior will create societal conflicts

From our initial analysis of the sequence of the human genome, particularly with the much smaller than expected number of human genes, the genetic determinists seemed to have clearly suffered a setback. After all, those looking for one gene for each human trait and disease couldn't possibly be accommodated with as few as twenty-odd thousand genes when hundreds of thousands were anticipated. Deciphering the genetic basis of human behavior has been a complex and largely unsatisfying endeavor due to the limitations of the existing tools of genetic trait analysis particularly with complex traits involving multiple genes.

All this will soon undergo a revolutionary transformation. The rate of change of DNA sequencing technology is continuing at an exponential pace. We are approaching the time when we will go from having a few human genome sequences to complex databases containing first tens, to hundreds of thousands, of complete genomes, then millions. Within a decade we will begin rapidly accumulating the complete genetic code of humans along with the phenotypic repertoire of the same individuals. By performing multifactorial analysis of the DNA sequence variations, together with the comprehensive phenotypic information gleaned from every branch of human investigatory discipline, for the first time in history, we will be able to provide answers to quantitatively questions of what is genetic versus what is due to the environment. This is already taking place in cancer research where we can measure the differences in genetic mutations inherited from our parents versus those acquired over our lives from environmental damage. This good news will help transform the treatment of cancer by allowing us to know which proteins need to be targeted.

However, when these new powerful computers and databases are used to help us analyze who we are as humans, will society at large, largely ignorant and afraid of science, be ready for the answers we are likely to get?

For example, we know from experiments on fruit flies that there are genes that control many behaviors, including sexual activity. We sequenced the dog genome a couple of years ago and now an additional breed has had its genome decoded. The canine world offers a unique look into the genetic basis of behavior. The large number of distinct dog breeds originated from the wolf genome by selective breeding, yet each breed retains only subsets of the wolf behavior spectrum. We know that there is a genetic basis not only of the appearance of the breeds with 30-fold difference in weight and 6-fold in height but in their inherited actions. For example border collies can use the power of their stare to herd sheep instead of freezing them in place prior to devouring them.

We attribute behaviors in other mammalian species to genes and genetics but when it comes to humans we seem to like the notion that we are all created equal, or that each child is a "blank slate". As we obtain the sequences of more and more mammalian genomes including more human sequences, together with basic observations and some common sense, we will be forced to turn away from the politically correct interpretations, as our new genomic tool sets provide the means to allow us to begin to sort out the reality about nature or nurture. In other words, we are at the threshold of a realistic biology of humankind.

It will inevitably be revealed that there are strong genetic components associated with most aspects of what we attribute to human existence including personality subtypes, language capabilities, mechanical abilities, intelligence, sexual activities and preferences, intuitive thinking, quality of memory, will power, temperament, athletic abilities, etc. We will find unique manifestations of human activity linked to genetics associated with isolated and/or inbred populations.

The danger rests with what we already know: that we are not all created equal. Further danger comes with our ability to quantify and measure the genetic side of the equation before we can fully understand the much more difficult task of evaluating environmental components of human existence. The genetic determinists will appear to be winning again, but we cannot let them forget the range of potential of human achievement with our limiting genetic repertoire.

President, The Royal Society; Professor of Cosmology & Astrophysics, Master, Trinity College, University of Cambridge; Author, Our Final Century: The 50/50 Threat to Humanity's Survival

Science may be 'running out of control'

Public opinion surveys (at least in the UK) reveal a generally positive attitude to science. However, this is coupled with widespread worry that science may be 'running out of control'. This latter idea is, I think, a dangerous one, because if widely believed it could be self-fulfilling.

In the 21st century, technology will change the world faster than ever — the global environment, our lifestyles, even human nature itself. We are far more empowered by science than any previous generation was: it offers immense potential — especially for the developing world — but there could be catastrophic downsides. We are living in the first century when the greatest risks come from human actions rather than from nature.

Almost any scientific discovery has a potential for evil as well as for good; its applications can be channelled either way, depending on our personal and political choices; we can't accept the benefits without also confronting the risks. The decisions that we make, individually and collectively, will determine whether the outcomes of 21st century sciences are benign or devastating. But there's' a real danger that that, rather than campaigning energetically for optimum policies, we'll be lulled into inaction by a feeling of fatalism — a belief that science is advancing so fast, and is so much influenced by commercial and political pressures, that nothing we can do makes any difference.

The present share-out of resources and effort between different sciences is the outcome of a complicated 'tension' between many extraneous factors. And the balance is suboptimal. This seems so whether we judge in purely intellectual terms, or take account of likely benefit to human welfare. Some subjects have had the 'inside track' and gained disproportionate resources. Others, such as environmental researches, renewable energy sources, biodiversity studies and so forth, deserve more effort. Within medical research the focus is disproportionately on cancer and cardiovascular studies, the ailments that loom largest in prosperous countries, rather than on the infectious diseases endemic in the tropics.

Choices on how science is applied — to medicine, the environment, and so forth — should be the outcome of debate extending way beyond the scientific community. Far more research and development can be done than we actually want or can afford to do; and there are many applications of science that we should consciously eschew.

Even if all the world's scientific academies agreed that a specific type of research had a specially disquieting net 'downside' and all countries, in unison, imposed a ban, what is the chance that it could be enforced effectively enough? In view of the failure to control drug smuggling or homicides, it is unrealistic to expect that, when the genie is out of the bottle, we can ever be fully secure against the misuse of science. And in our ever more interconnected world, commercial pressure are harder to control and regulate. The challenges and difficulties of 'controlling' science in this century will indeed be daunting.

Cynics would go further, and say that anything that is scientifically and technically possible will be done — somewhere, sometime — despite ethical and prudential objections, and whatever the regulatory regime. Whether this idea is true or false, it's an exceedingly dangerous one, because it's engenders despairing pessimism, and demotivates efforts to secure a safer and fairer world. The future will best be safeguarded — and science has the best chance of being applied optimally — through the efforts of people who are less fatalistic.

< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12


John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2006 by
Edge Foundation, Inc
All Rights Reserved.