< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12

next >



Printer version


Alun Anderson

Philip W. Anderson

Scott Atran

Mahzarin Banaji

Simon Baron-Cohen

Samuel Barondes

Gregory Benford

Jesse Bering

Jeremy Bernstein

Jamshed Bharucha

Susan Blackmore

Paul Bloom

David Bodanis

Stewart Brand

Rodney Brooks

David Buss

Philip Campbell

Leo Chalupa

Andy Clark

Gregory Cochran
Jerry Coyne

M. Csikszentmihalyi

Richard Dawkins

Paul Davies

Stanislas Deheane

Daniel C. Dennett
Keith Devlin
Jared Diamond
Denis Dutton
Freeman Dyson
George Dyson
Juan Enriquez

Paul Ewald

Todd Feinberg

Eric Fischl

Helen Fisher

Richard Foreman

Howard Gardner

Joel Garreau

David Gelernter

Neil Gershenfeld

Danie Gilbert

Marcelo Gleiser

Daniel Goleman

Brian Goodwin

Alison Gopnik

April Gornik

John Gottman

Brian Greene

Diane F. Halpern

Haim Harari

Judith Rich Harris

Sam Harris

Marc D. Hauser

W. Daniel Hillis

Donald Hoffman

Gerald Holton
John Horgan

Nicholas Humphrey

Piet Hut

Marco Iacoboni

Eric R. Kandel

Kevin Kelly

Bart Kosko

Stephen Kosslyn
Kai Krause

Ray Kurzweil

Jaron Lanier

David Lykken

Gary Marcus
Lynn Margulis
Thomas Metzinger
Geoffrey Miller

Oliver Morton

David G. Myers

Randolph Nesse

Richard E. Nisbett

Tor Nørretranders

James O'Donnell

John Allen Paulos

Irene Pepperberg

Clifford Pickover

Steven Pinker

David Pizarro

Jordan Pollack

Ernst Pöppel

Carolyn Porco

Robert Provine

VS Ramachandran

Martin Rees

Matt Ridley

Carlo Rovelli

Rudy Rucker

Douglas Rushkoff

Karl Sabbagh

Roger Schank

Scott Sampson

Charles Seife

Terrence Sejnowski

Martin Seligman

Robert Shapiro
Rupert Sheldrake

Michael Shermer

Clay Shirky

Barry Smith

Lee Smolin

Dan Sperber

Paul Steinhardt

Steven Strogatz
Leonard Susskind

Timothy Taylor

Frank Tipler

Arnold Trehub

Sherry Turkle

J. Craig Venter

Philip Zimbardo

Professor of Psychology, Provost, Senior Vice President, Tufts University

Education as we know it does not accomplish what we believe it does

The more we discover about cognition and the brain, the more we will realize that education as we know it does not accomplish what we believe it does.

It is not my purpose to echo familiar critiques of our schools. My concerns are of a different nature and apply to the full spectrum of education, including our institutions of higher education, which arguably are the finest in the world.

Our understanding of the intersection between genetics and neuroscience (and their behavioral correlates) is still in its infancy. This century will bring forth an explosion of new knowledge on the genetic and environmental determinants of cognition and brain development, on what and how we learn, on the neural basis of human interaction in social and political contexts, and on variability across people.

Are we prepared to transform our educational institutions if new science challenges cherished notions of what and how we learn? As we acquire the ability to trace genetic and environmental influences on the development of the brain, will we as a society be able to agree on what our educational objectives should be?

Since the advent of scientific psychology we have learned a lot about learning. In the years ahead we will learn a lot more that will continue to challenge our current assumptions. We will learn that some things we currently assume are learnable are not (and vice versa), that some things that are learned successfully don't have the impact on future thinking and behavior that we imagine, and that some of the learning that impacts future thinking and behavior is not what we spend time teaching. We might well discover that the developmental time course for optimal learning from infancy through the life span is not reflected in the standard educational time line around which society is organized. As we discover more about the gulf between how we learn and how we teach, hopefully we will also discover ways to redesign our systems — but I suspect that the latter will lag behind the former.

Our institutions of education certify the mastery of spheres of knowledge valued by society. Several questions will become increasingly pressing, and are even pertinent today. How much of this learning persists beyond the time at which acquisition is certified? How does this learning impact the lives of our students? How central is it in shaping the thinking and behavior we would like to see among educated people as they navigate, negotiate and lead in an increasingly complex world?

We know that tests and admissions processes are selection devices that sort people into cohorts on the basis of excellence on various dimensions. We know less about how much even our finest examples of teaching contribute to human development over and above selection and motivation.

Even current knowledge about cognition (specifically, our understanding of active learning, memory, attention, and implicit learning) has not fully penetrated our educational practices, because of inertia as well as a natural lag in the application of basic research. For example, educators recognize that active learning is superior to the passive transmission of knowledge. Yet we have a long way to go to adapt our educational practices to what we already know about active learning.

We know from research on memory that learning trials bunched up in time produce less long term retention than the same learning trials spread over time. Yet we compress learning into discrete packets called courses, we test learning at the end of a course of study, and then we move on. Furthermore, memory for both facts and methods of analytic reasoning are context-dependent. We don't know how much of this learning endures, how well it transfers to contexts different from the ones in which the learning occurred, or how it influences future thinking.

At any given time we attend to only a tiny subset of the information in our brains or impinging on our senses. We know from research on attention that information is processed differently by the brain depending upon whether or not it is attended, and that many factors — endogenous and exogenous — control our attention. Educators have been aware of the role of attention in learning, but we are still far from understanding how to incorporate this knowledge into educational design. Moreover, new information presented in a learning situation is interpreted and encoded in terms of prior knowledge and experience; the increasingly diverse backgrounds of students placed in the same learning contexts implies that the same information may vary in its meaningfulness to different students and may be recalled differently.

Most of our learning is implicit, acquired automatically and unconsciously from interactions with the physical and social environment. Yet language — and hence explicit, declarative or consciously articulated knowledge — is the currency of formal education.

Social psychologists know that what we say about why we think and act as we do is but the tip of a largely unconscious iceberg that drives our attitudes and our behavior. Even as cognitive and social neuroscience reveals the structure of these icebergs under the surface of consciousness (for example, persistent cognitive illusions, decision biases and perceptual biases to which even the best educated can be unwitting victims), it will be less clear how to shape or redirect these knowledge icebergs under the surface of consciousness.

Research in social cognition shows clearly that racial, cultural and other social biases get encoded automatically by internalizing stereotypes and cultural norms. While we might learn about this research in college, we aren't sure how to counteract these factors in the very minds that have acquired this knowledge.

We are well aware of the power of non-verbal auditory and visual information, which when amplified by electronic media capture the attention of our students and sway millions. Future research should give us a better understanding of nuanced non-verbal forms of communication, including their universal and culturally based aspects, as they are manifest in social, political and artistic contexts.

Even the acquisition of declarative knowledge through language — the traditional domain of education — is being usurped by the internet at our finger tips. Our university libraries and publication models are responding to the opportunities and challenges of the information age. But we will need to rethink some of our methods of instruction too. Will our efforts at teaching be drowned out by information from sources more powerful than even the best classroom teacher?

It is only a matter of time before we have brain-related technologies that can alter or supplement cognition, influence what and how we learn, and increase competition for our limited attention. Imagine the challenges for institutions of education in an environment in which these technologies are readily available, for better or worse.

The brain is a complex organ, and we will discover more of this complexity. Our physical, social and information environments are also complex and are becoming more so through globalization and advances in technology. There will be no simple design principles for how we structure education in response to these complexities.

As elite colleges and universities, we see increasing demand for the branding we confer, but we will also see greater scrutiny from society for the education we deliver. Those of us in positions of academic leadership will need wisdom and courage to examine, transform and justify our objectives and methods as educators.

Artist, New York City; Danese Gallery

The exact effect of art can't be controlled or fully anticipated

Great art makes itself vulnerable to interpretation, which is one reason that it keeps being stimulating and fascinating for generations. The problem inherent in this is that art could inspire malevolent behavior, as per the notion popularly expressed by A Clockwork Orange. When I was young, aspiring to be a conceptual artist, it disturbed me greatly that I couldn't control the interpretation of my work. When I began painting, it was even worse; even I wasn't completely sure of what my art meant. That seemed dangerous for me, personally, at that time. I gradually came not only to respect the complexity and inscrutability of painting and art, but to see how it empowers the object. I believe that works of art are animated by their creators, and remain able to generate thoughts, feelings, responses. However, the fact is that the exact effect of art can't be controlled or fully anticipated.

Physicist, Macquarie University, Sydney; Author, How to Build a Time Machine

The fight against global warming is lost

Some countries, including the United States and Australia, have been in denial about global warming. They cast doubt on the science that set alarm bells ringing. Other countries, such as the UK, are in panic, and want to make drastic cuts in greenhouse emissions. Both stances are irrelevant, because the fight is a hopeless one anyway. In spite of the recent hike in the price of oil, the stuff is still cheap enough to burn. Human nature being what it is, people will go on burning it until it starts running out and simple economics puts the brakes on. Meanwhile the carbon dioxide levels in the atmosphere will just go on rising. Even if developed countries rein in their profligate use of fossil fuels, the emerging Asian giants of China and India will more than make up the difference. Rich countries, whose own wealth derives from decades of cheap energy, can hardly preach restraint to developing nations trying to climb the wealth ladder. And without the obvious solution — massive investment in nuclear energy — continued warming looks unstoppable.

Campaigners for cutting greenhouse emissions try to scare us by proclaiming that a warmer world is a worse world. My dangerous idea is that it probably won't be. Some bad things will happen. For example, the sea level will rise, drowning some heavily populated or fertile coastal areas. But in compensation Siberia may become the world's breadbasket. Some deserts may expand, but others may shrink. Some places will get drier, others wetter. The evidence that the world will be worse off overall is flimsy. What is certainly the case is that we will have to adjust, and adjustment is always painful. Populations will have to move. In 200 years some currently densely populated regions may be deserted. But the population movements over the past 200 years have been dramatic too. I doubt if anything more drastic will be necessary. Once it dawns on people that, yes, the world really is warming up and that, no, it doesn't imply Armageddon, then the international agreements like the Kyoto protocol will fall apart.

The idea of giving up the global warming struggle is dangerous because it shouldn't have come to this. Mankind does have the resources and the technology to cut greenhouse gas emission. What we lack is the political will. People pay lip service to environmental responsibility, but they are rarely prepared to put their money where their mouth is. Global warming may turn out to be not so bad after all, but many other acts of environmental vandalism are manifestly reckless: the depletion of the ozone layer, the destruction of rain forests, the pollution of the oceans. Giving up on global warming will set an ugly precedent.

Research Professor, Department of Anthropology, Rutgers University; Author, Why We Love

If patterns of human love subtlely change, all sorts of social and political atrocities can escalate

Serotonin-enhancing antidepressants (such as Prozac and many others) can jeopardize feelings of romantic love, feelings of attachment to a spouse or partner, one's fertility and one's genetic future.

I am working with psychiatrist Andy Thomson on this topic. We base our hypothesis on patient reports, fMRI studies, and other data on the brain.

Foremost, as SSRIs elevate serotonin they also suppress dopaminergic pathways in the brain. And because romantic love is associated with elevated activity in dopaminergic pathways, it follows that SSRIs can jeopardize feelings of intense romantic love. SSRIs also curb obsessive thinking and blunt the emotions--central characteristics of romantic love. One patient described this reaction well, writing: "After two bouts of depression in 10 years, my therapist recommended I stay on serotonin-enhancing antidepressants indefinitely. As appreciative as I was to have regained my health, I found that my usual enthusiasm for life was replaced with blandness. My romantic feelings for my wife declined drastically. With the approval of my therapist, I gradually discontinued my medication. My enthusiasm returned and our romance is now as strong as ever. I am prepared to deal with another bout of depression if need be, but in my case the long-term side effects of antidepressants render them off limits".

SSRIs also suppress sexual desire, sexual arousal and orgasm in as many as 73% of users. These sexual responses evolved to enhance courtship, mating and parenting. Orgasm produces a flood of oxytocin and vasopressin, chemicals associated with feelings of attachment and pairbonding behaviors. Orgasm is also a device by which women assess potential mates. Women do not reach orgasm with every coupling and the "fickle" female orgasm is now regarded as an adaptive mechanism by which women distinguish males who are willing to expend time and energy to satisfy them. The onset of female anorgasmia may jeopardize the stability of a long-term mateship as well.

Men who take serotonin-enhancing antidepressants also inhibit evolved mechanisms for mate selection, partnership formation and marital stability. The penis stimulates to give pleasure and advertise the male's psychological and physical fitness; it also deposits seminal fluid in the vaginal canal, fluid that contains dopamine, oxytocin, vasopressin, testosterone, estrogen and other chemicals that most likely influence a female partner's behavior.

These medications can also influence one's genetic future. Serotonin increases prolactin by stimulating prolactin releasing factors. Prolactin can impair fertility by suppressing hypothalamic GnRH release, suppressing pituitary FSH and LH release, and/or suppressing ovarian hormone production. Clomipramine, a strong serotonin-enhancing antidepressant, adversely affects sperm volume and motility.

I believe that Homo sapiens has evolved (at least) three primary, distinct yet overlapping neural systems for reproduction. The sex drive evolved to motivate ancestral men and women to seek sexual union with a range of partners; romantic love evolved to enable them to focus their courtship energy on a preferred mate, thereby conserving mating time and energy; attachment evolved to enable them to rear a child through infancy together. The complex and dynamic interactions between these three brain systems suggest that any medication that changes their chemical checks and balances is likely to alter an individual's courting, mating and parenting tactics, ultimately affecting their fertility and genetic future.

The reason this is a dangerous idea is that the huge drug industry is heavily invested in selling these drugs; millions of people currently take these medications worldwide; and as these drugs become generic, many more will soon imbibe — inhibiting their ability to fall in love and stay in love. And if patterns of human love subtlely change, all sorts of social and political atrocities can escalate.

Cultural Revolution Correspondent, Washington Post ; Author, Radical Evolution

Suppose Faulkner was right?

In his December 10, 1950, Nobel Prize acceptance speech, William Faulkner said:

I decline to accept the end of man. It is easy enough to say that man is immortal simply because he will endure: that when the last ding-dong of doom has clanged and faded from the last worthless rock hanging tideless in the last red and dying evening, that even then there will still be one more sound: that of his puny inexhaustible voice, still talking. I refuse to accept this. I believe that man will not merely endure: he will prevail.

He is immortal, not because he alone among creatures has an inexhaustible voice, but because he has a soul, a spirit capable of compassion and sacrifice and endurance. The poet's, the writer's, duty is to write about these things. It is his privilege to help man endure by lifting his heart, by reminding him of the courasge and honor and hope and pride and compassion and pity and sacrifice which have been the glory of his past. The poet's voice need not merely be the record of man, it can be one of the props, the pillars to help him endure and prevail.

It's easy to dismiss such optimism. The reason I hope Faulkner was right, however, is that we are at a turning point in history. For the first time, our technologies are not so much aimed outward at modifying our environment in the fashion of fire, clothes, agriculture, cities and space travel. Instead, they are increasingly aimed inward at modifying our minds, memories, metabolisms, personalities and progeny. If we can do all that, then we are entering an era of engineered evolution — radical evolution, if you will — in which we take control of what it will mean to be human.

This is not some distant, science-fiction future. This is happening right now, in our generation, on our watch. The GRIN technologies — the genetic, robotic, information and nano processes — are following curves of accelerating technological change the arithmetic of which suggests that the last 20 years are not a guide to the next 20 years. We are more likely to see that magnitude of change in the next eight. Similarly, the amount of change of the last half century, going back to the time when Faulkner spoke, may well be compressed into the next 14.

This raises the question of where we will gain the wisdom to guide this torrent, and points to what happens if Faulkner was wrong. If we humans are not so much able to control our tools, but instead come to be controlled by them, then we will be heading into a technodeterminist future.

You can get different versions of what that might mean.

Some would have you believe that a future in which our creations eliminate the ills that have plagued mankind for millennia — conquering pain, suffering, stupidity, ignorance and even death — is a vision of heaven. Some even welcome the idea that someday soon, our creations will surpass the pitiful limitations of Version 1.0 humans, themselves becoming a successor race that will conquer the universe, and care for us benevolently.

Others feel strongly that a life without suffering is a life without meaning, reducing humankind to ignominious, character-less husks. They also point to what could happen if such powerful self-replicating technologies get into the hands of bumblers or madmen. They can easily imagine a vision of hell in which we wipe out not only our species, but all of life on earth.

If Faulkner is right, however, there is a third possible future. That is the one that counts on the ragged human convoy of divergent perceptions, piqued honor, posturing, insecurity and humor once again wending its way to glory. It puts a shocking premium on Faulkner's hope that man will prevail "because he has a soul, a spirit capable of compassion and sacrifice and endurance." It assumes that even as change picks up speed, giving us less and less time to react, we will still be able to rely on the impulse that Churchill described when he said, "Americans can always be counted on to do the right thing—after they have exhausted all other possibilities."

The key measure of such a "prevail" scenario's success would be an increasing intensity of links between humans, not transistors. If some sort of transcendence is achieved beyond today's understanding of human nature, it would not be through some individual becoming superman. Transcendence would be social, not solitary. The measure would be the extent to which many transform together.

The very fact that Faulkner's proposition looms so large as we look into the future does at least illuminate the present.

Referring to Faulkner's breathtaking line, "when the last ding-dong of doom has clanged and faded from the last worthless rock hanging tideless in the last red and dying evening, that even then there will still be one more sound: that of his puny inexhaustible voice, still talking," the author Bruce Sterling once told me, "You know, the most interesting part about that speech is that part right there, where William Faulkner, of all people, is alluding to H. G. Wells and the last journey of the Traveler from The Time Machine. It's kind of a completely heartfelt, probably drunk mishmash of cornball crypto-religious literary humanism and the stark, bonkers, apocalyptic notions of atomic Armageddon, human extinction, and deep Darwinian geological time. Man, that was the 20th century all over."

Cognitive Neuropsychology Researcher, Institut National de la Santé, Paris; Author, The Number Sense

Touching and pushing the limits of the human brain

From Copernicus to Darwin to Freud, science has a special way of deflating human hubris by proposing what is frequently perceived, at the time, as dangerous or pernicious ideas. Today, cognitive neuroscience presents us with a new challenging idea, whose accommodation will require substantial personal and societal effort — the discovery of the intrinsic limits of the human brain.

Calculation was one of the first domains where we lost our special status — right from their inception, computers were faster than the human brain, and they are now billions of times ahead of us in their speed and breadth of number crunching. Psychological research shows that our mental "central executive" is amazingly limited — we can process only one thought at a time, at a meager rate of five or ten per second at most. This is rather surprising. Isn't the human brain supposed to be the most massively parallel machine on earth? Yes, but its architecture is such that the collective outcome of this parallel organization, our mind, is a very slow serial processor. What we can become aware of is intrinsically limited. Whenever we delve deeply into the processing of one object, we become literally blind to other items that would require our attention (the "attentional blink" paradigm). We also suffer from an "illusion of seeing": we think that we take in a whole visual scene and see it all at once, but research shows that major chunks of the image can be changed surreptitiously without our noticing.

True, relative to other animal species, we do have a special combinatorial power, which lies at the heart of the remarkable cultural inventions of mathematics, language, or writing. Yet this combinatorial faculty only works on the raw materials provided by a small number of core systems for number, space, time, emotion, conspecifics, and a few other basic domains. The list is not very long — and within each domain, we are now discovering lots of little ill-adapted quirks, evidence of stupid design as expected from a brain arising from an imperfect evolutionary process (for instance, our number system only gives us a sense of approximate quantity — good enough for foraging, but not for exact mathematics). I therefore do not share Marc Hauser's optimism that our mind has a "universal" or "limitless" expressive power. The limits are easy to touch in mathematics, in topology for instance, where we struggle with the simplest objects (is a curve a knot… or not?).

As we discover the limits of the human brain, we also find new ways to design machines that go beyond those limits. Thus, we have to get ready for a society where, more and more, the human mind will be replaced by better computers and robots — and where the human operator will be increasingly considered a nuisance rather than an asset. This is already the case in aeronautics, where flight stability is ensured by fast cybernetics and where landing and take off will soon be assured by computer, apparently with much improved safety.

There are still a few domains where the human brain maintains an apparent superiority. Visual recognition used to be one — but already, superb face recognition software is appearing, capable of storing and recognizing thousands of faces with close to human performance. Robotics is another. No robot to date is capable of navigating smoothly through a complicated 3-D world. Yet a third area of human superiority is high-level semantics and creativity: the human ability to make sense of a story, to pull out the relevant knowledge from a vast store of potentially useful facts, remains unequalled.

Suppose that, for the next 50 years, those are the main areas in which engineers will remain unable to match the performance of the human brain. Are we ready for a world in which the human contributions are binary, either at the highest level (thinkers, engineers, artists…) or at the lowest level, where human workforce remains cheaper than mechanization? To some extent, I would argue that this great divide is already here, especially between North and South, but also within our developed countries, between upper and lower casts.

What are the solutions? I envisage two of them. The first is education. The human brain to some extent is changeable. Thanks to education, we can improve considerably upon the stock of mental tools provided to us by evolution. In fact, relative to the large changes that schooling can provide, whatever neurobiological differences distinguish the sexes or the races are minuscule (and thus largely irrelevant — contra Steve Pinker). The crowning achievements of Sir Isaac Newton are now accessible to any student in physics and algebra — whatever his or her skin color.

Of course, our learning ability isn't without bounds. It is itself tightly limited by our genes, which merely allow a fringe of variability in the laying down of our neuronal networks. We never fully gain entirely new abilities — but merely transform our existing brain networks, a partial and constrained process that I have called "cultural recycling" or "recyclage".

As we gain knowledge of brain plasticity, a major application of cognitive neuroscience research should be the improvement of life-long education, with the goal of optimizing this transformation of our brains. Consider reading. We now understand much better how this cultural capacity is laid down. A posterior brain network, initially evolved to recognize objects and faces, gets partially recycled for the shapes of letters and words, and learns to connect these shapes to other temporal areas for sounds and words. Cultural evolution has modified the shapes of letters so that they are easily learnable by this brain network. But, the system remains amazingly imperfect. Reading still has to go through the lopsided design of the retina, where the blood vessels are put in front of the photoreceptors, and where only a small region of the fovea has enough resolution to recognize small print. Furthermore, both the design of writing systems and the way in which they are taught are perfectible. In the end, after years of training, we can only read at an appalling speed of perhaps 10 words per second, a baud rate surpassed by any present-day modem.

Nevertheless, this cultural invention has radically changed our cognitive abilities, doubling our verbal working memory for instance. Who knows what other cultural inventions might lie ahead of us, and might allow us to further push the limits of our brain biology?

A second, more futuristic solution may lie in technology. Brain-computer interfaces are already around the corner. They are currently being developed for therapeutic purposes. Soon, cortical implants will allow paralyzed patients to move equipment by direct cerebral command. Will such devices later be applied to the normal human brain, in the hopes of extending our memory span or the speed of our access to information? And will we be able to forge a society in which such tools do not lead to further divisions between, on the one hand, high-tech brains powered by the best education and neuro-gear, and on the other hand, low-tech man power just good enough for cheap jobs?

Artist, New York City; Mary Boone Gallery

The unknown becomes known, and is not replaced with a new unkown

Several years ago I stood in front of a painting by Vermeer. It was a painting of a woman reading a letter. She stood near the window for better lighting and behind her hung a map of the known world. I was stunned by the revelation of this work. Vermeer understood something so basic to human need it had gone virtually unnoticed: communication from afar.

Everything we have done to make us more capable, more powerful, better protected, more intelligent, has been by enhancing our physical limitations, our perceptual abilities, our adaptability. When I think of Vermeer's woman reading the letter I wonder how long did it take to get to her? Then I think, my god, at some time we developed a system in which one could leave home and send word back! We figured out a way that we could be heard from far away and then another system so that we can be seen from far away. Then I start to marvel at the alchemy of painting and how we have been able to invest materials with consciousness so that Vermeer can talk to me across time! I see too he has put me in the position of not knowing as I am kept from reading the content of the letter. In this way he has placed me at the edge, the frontier of wanting to know what I cannot know. I want to know how long has this letter sender been away and what was he doing all this time. Is he safe? Does he still love her? Is he on his way home?

Vermeer puts me into what had been her condition of uncertainty. All I can do is wonder and wait. This makes me think about how not knowing is so important. Not knowing makes the world large and uncertain and our survival tenuous. It is a mystery why humans roam and still more a mystery why we still need to feel so connected to the place we have left. The not knowing causes such profound anxiety it, in turn, spawns creativity. The impetus for this creativity is empowerment. Our gadgets, gizmoes, networks of transportation and communication, have all been developed either to explore, utilize or master the unknown territory.

If the unknown becomes known, and is not replaced with a new unknown, if the farther we reach outward is connected only to how fast we can bring it home, if the time between not knowing and knowing becomes too small, creativity will be daunted. And so I worry, if we bring the universe more completely, more effortlessly, into our homes will there be less reason to leave them?

Psychologist, London School of Economics; Author, The Mind Made Flesh

It is undesirable to believe in a proposition when there is no ground whatever for supposing it true

Bertrand Russell's idea, put forward 80 years ago, is about as dangerous as they come. I don't think I can better it: "I wish to propose for the reader's favourable consideration a doctrine which may, I fear, appear wildly paradoxical and subversive. The doctrine in question is this: that it is undesirable to believe in a proposition when there is no ground whatever for supposing it true." (The opening lines of his Sceptical essays).

Writer, Consultant; Author: The Electric Universe

The hyper-Islamicist critique of the West as a decadent force that is already on a downhill course might be true

I wonder sometimes if the hyper-Islamicist critique of the West as a decadent force that is already on a downhill course might be true. At first it seems impossible: no one's richer than the US, and no one has as powerful an Army; western Europe has vast wealth and university skills as well.

But what got me reflecting was the fact that in just four years after Pearl Harbor, the US had defeated two of the greatest military forces the world had ever seen. Everyone naturally accepted there had to be restrictions on gasoline sales, to preserve limited source of gasoline and rubber; profiteers were hated. But the first four years after 9/11? Detroit automakers find it easy to continue paying off congressmen to ensure that gasoline-wasting SUV's aren't restricted in any way.

There are deep trends behind this. Technology is supposed to be speeding up, but if you think about it, airplanes have a similar feel and speed to ones of 30 years ago; cars and oil rigs and credit cards and the operations of the NYSE might be a bit more efficient than a few decades ago, but also don't feel fundamentally different. Aside from the telephones, almost all the objects and and daily habits in Spielberg's 20 year old film E.T. are about the same as today.

What has transformed is the possibility of quick change. It's a lot, lot harder than it was before. Patents for vague, general ideas are much easier to get than they were before, which slows down the introduction of new technology; academics in biotech and other fields are wary about sharing their latest research with potentially competing colleagues (which slows down the creation of new technology as well).

Even more, there's a tension, a fear of falling from the increasingly fragile higher tiers of society, which means that social barriers are higher as well. I went to adequate but not extraordinary public (state) schools in Chicago, but my children go to private schools. I suspect that many contributors to this site, unless they live in academic towns where state schools are especially strong, are in a similar position. This is fine for our children, but not for those of the same theoretical potential, yet who lack parents who can afford it.

Sheer inertia can mask such flaws for quite a while. The National Academy of Sciences has shown that, once again, the percentage of American-born university students studying the hard physical sciences has gone down. At one time that didn't matter, for life in America — and at the top American universities — was an overwhelming lure for ambitious youngsters from Seoul and Bangalore. But already there are signs of that slipping, and who knows what it'll be like in another decade or two.

There's another sort of inertia that's coming to an end as well. The first generation of immigrants from farm to city bring with them the attitudes of their farm world; the first generation of 'migrants' from blue collar city neighborhoods to upper middle class professional life bring similar attitudes of responsibility as well. We ignore what the media pours out about how we're supposed to live. We're responsible for parents, even when it's not to our economic advantage; we vote against our short-term economic interests, because it's the 'right' thing to do; we engage in philanthropy towards individuals of very different backgrounds from ourselves. But why? In many parts of America or Europe, the rules and habits creating those attitudes no longer exist at all.

When that finally gets cut away, will what replaces it be strong enough for us to survive?

Neurobiologist and Psychiatrist, University of California San  Francisco; Author, Better Than Prozac

Using Medications To Change Personality

Personality — the pattern of thoughts, feelings, and actions that is typical of each of us — is generally formed by early adulthood. But many people still want to change. Some, for example, consider themselves too gloomy and uptight and want to become more cheerful and flexible. Whatever their aims they often turn to therapists, self-help books, and religious practices.

In the past few decades certain psychiatric medications have become an additional tool for those seeking control of their lives. Initially designed to be used for a few months to treat episodic psychological disturbances such as severe depression, they are now being widely prescribed for indefinite use to produce sustained shifts in certain personality traits. Prozac is the best known of them, but many others are on the market or in development. By directly affecting brain circuits that control emotions, these medications can produce desirable effects that may be hard to replicate by sheer force of will or by behavioral exercises. Millions keep taking them continuously, year after year, to modulate personality.

Nevertheless, despite the testimonials and apparent successes, the sustained use of such drugs to change personality should still be considered dangerous. Not because manipulation of brain chemicals is intrinsically cowardly, immoral, or a threat to the social order. In the opinion of experienced clinicians medications such as Prozac may actually have the opposite effect, helping to build character and to increase personal responsibility. The real danger is that there are no controlled studies of the effects of these drugs on personality over the many years or even decades in which some people are taking them. So we are left with a reliance on opinion and belief. And this, as in all fields, we know to be dangerous.

< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 | 11 | 12

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2006 by
Edge Foundation, Inc
All Rights Reserved.