1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10


"What Do You Believe Is True Even Though You Cannot Prove It?"

Printer-friendly version


Alun Anderson

Chris W. Anderson

Philip W. Anderson

Scott Atran

Simon Baron-Cohen

John Barrow

Gregory Benford

Jesse Bering

Susan Blackmore

Ned Block

Paul Bloom

David Buss

William Calvin

Leo Chalupa

Mihaly Csikszentmihalyi

Paul Davies

Richard Dawkins

Stanislas Deheane

Daniel C. Dennett

Keith Devlin

Jared Diamond

Denis Dutton

Esther Dyson

Freeman Dyson

George Dyson

Jeffrey Epstein

Todd Feinberg

Christine Finn

Kenneth Ford

Howard Gardner

David Gelernter

Neil Gershenfeld

Steve Giddings

Daniel Gilbert

Rebecca Goldstein

Daniel Goleman

Brian Goodwin

Alison Gopnik

Jonathan Haidt

Haim Harari

Judith Rich Harris

Sam Harris

Marc D. Hauser

Marti Hearst

W. Daniel Hillis

Donald Hoffman

John Horgan

Verena Huber-Dyson

Nicholas Humphrey

Piet Hut

Stuart Kauffman

Alan Kay

Kevin Kelly

Stephen Kosslyn

Kai Krause

Lawrence Krauss

Ray Kurzweil

Jaron Lanier

Leon Lederman

Janna Levin

Joseph LeDoux

Seth Lloyd

Benoit Mandelbrot

Gary Marcus

Lynn Margulis

John McCarthy

Pamela McCorduck

Ian McEwan

John McWhorter

Thomas Metzinger

Oliver Morton

David Myers

Randolph Nesse

Tor Nørretranders

Martin Nowak

James O'Donnell

Alex Pentland

Irene Pepperberg

Stephen Petranek

Clifford Pickover

Steven Pinker

Jordan Pollack

Carolyn Porco

Robert R. Provine

Martin Rees

Howard Rheingold

Carlo Rovelli

Rudy Rucker

Douglas Rushkoff

Karl Sabbagh

Robert Sapolsky

Roger Schank

Jean Paul Schmetz

Stephen H. Schneider

Gino Segre

Martin E. P. Seligman

Terrence Sejnowski

Rupert Sheldrake

Michael Shermer

Charles Simonyi

John R. Skoyles

Lee Smolin

Elizabeth Spelke

Maria Spiropulu

Tom Standage

Paul Steinhardt

Bruce Sterling

Leonard Susskind

Nassim Taleb

Timothy Taylor

Arnold Trehub

Robert Trivers

J. Craig Venter

Alexander Vilenkin

Margaret Wertheim

Donald I. Williamson

Ian Wilmut

Ellen Winner

Anton Zeilinger


Editor of Release 1.0; Trustee, Long Now Foundation; Author, Release 2.0

We're living longer, and thinking shorter.

[Disclaimer: Since I'm not a scientist, I'm not even going to attempt to take on something scientific. Rather, I want to talk about something that can't easily be measured, let alone proved.

And second, though what I'm saying may sound gloomy, I love the times we live in. There has never been a time more interesting, more full of things to explain, interesting people to meet, worthy causes to support, challenging problems to solve.]

It's all about time.

I think modern life has fundamentally and paradoxically changed our sense of time. Even as we live longer, we seem to think shorter. Is it because we cram more into each hour? Or because the next person over seems to cram more into each hour?

For a variety of reasons, everything is happening much faster and more things are happening. Change is a constant.

It used to be that machines automated work, giving us more time to do other things. But now machines automate the production of attention-consuming information, which takes our time. For example, if one person sends the same e-mail message to 10 people, then 10 people have to respond.

The physical friction of everyday life—the time it took Isaac Newton to travel by coach from London to Cambridge, the dead spots of walking to work (no iPod), the darkness that kept us from reading—has disappeared, making every minute not used productively into an opportunity cost.

And finally, we can measure more, over smaller chunks of time. From airline miles to calories (and carbs and fat grams), from friends on Friendster to steps on a pedometer, from realtime stock prices to millions of burgers consumed, we count things by the minute and the second.

Unfortunately, this carries over into how we think and plan: Businesses focus on short-term results; politicians focus on elections; school systems focus on test results; most of us focus on the weather rather than the climate. Everyone knows about the big problems, but their behavior focuses on the here and now.

I first noticed this phenomenon in a big way in the US right after 9/11, when it became impossible to schedule an appointment or get anyone to make a commitment. To me, it felt like Russia (where I had been spending time since 1989), where people avoided long-term plans because there was little discernible relationship between effort and result. Suddenly, even in the US, people were behaving like the Russians of those days, reluctant to plan for anything more than a few days out.

Of course, that immediate crisis has passed, but there's still the same sense of unpredictability dogging our thinking in the US (in particular). Best to concentrate on the current quarter, because who knows what job I'll have next year. Best to pass that test, because what I actually learn won't be worth much ten years from now anyway.

How can we reverse this?

It's a social problem, but I think it may also herald a mental one—which I describe as mental diabetes.

Whatever's happening to adults, most of us grew up reading books (at least occasionally) and playing with "uninteractive" toys that required us to make up our own stories, dialogue and behavior for them. Today's children are living in an information-rich, time-compressed environment that often seems to replace a child's imagination rather than stimulate it. I posit that being fed so much processed information—video, audio, images, flashing screens, talking toys, simulated action games—is akin to being fed too much processed, sugar-rich food. It may seriously mess up children's information metabolism and their ability to process information for themselves. In other words, will they be able to discern cause and effect, to put together a coherent story line, to think scientifically?

I don't know the answers, but these questions are worth thinking about, for the long term.

Psychologist, University of Texas, Austin; Author, The Evolution of Desire

True love.

I've spent two decades of my professional life studying human mating. In that time, I've documented phenomena ranging from what men and women desire in a mate to the most diabolical forms of sexual treachery. I've discovered the astonishingly creative ways in which men and women deceive and manipulate each other. I've studied mate poachers, obsessed stalkers, sexual predators, and spouse murderers. But throughout this exploration of the dark dimensions of human mating, I've remained unwavering in my belief in true love.

While love is common, true love is rare, and I believe that few people are fortunate enough to experience it. The roads of regular love are well traveled and their markers are well understood by many—the mesmerizing attraction, the ideational obsession, the sexual afterglow, profound self-sacrifice, and the desire to combine DNA. But true love takes its own course through uncharted territory. It knows no fences, has no barriers or boundaries. It's difficult to define, eludes modern measurement, and seems scientifically wooly. But I know true love exists. I just can't prove it.

Physicist, currently at CERN

I believe nothing to be true (clearly real) if it cannot be proved.

I'll take the question and make a pseudo-invariant transformation that makes it more apt to my brain. When Bohr was asked what is the complementary variable of "truth" (Wirklichkeit) he replied with no hesitation "clarity" (Klarheit). Contrary to Bohr, and since neither truth nor clarity are quantum mechanical variables, real truth and comprehensive clarity should be simultaneously achievable given rigorous experimental evidence. [In particular since "Wirklichkeit" means reality, and "Klarheit" is clarity in the sense of good understanding.]

In fact I will use clarity (as in "clear reality"), in the place of truth.

I will also invent equivalents for proof and for belief. Proof will be interchangeable with "experimental scientific evidence". Belief is more tricky given that it has to do with complex carbonic life. It can be interchangeable with "theoretical assessment" or "assessment by common sense" (depending on the scale and the available technology). In this process (no doubt in a path full of traps and pitfalls) I have cannibalized the original question to the following:

What do you (commonsensical/theoretically) assess to be clearly real even though you have no experimental scientific evidence for it?

Now this is hard: there are many theoretical assessments for the explanation of the natural phenomena at the extreme energy scales (from the subnuclear to the supercosmic), that possess a degree of clarity. But all of them are inspired by the vast collection of conciliatory data that scale by scale speak of Nature's works. This is so even for string theory. 

So the answer is still...nothing.

Following Bohr's complementarity I would spot that belief and proof are in some way complementary: if you believe you don't need proof, and (arguably) if you have proof you don't need to believe.(I would assign the hard-core string theorists who do not really care about experimental scientific evidence in the first category).

But Edge wants us to identify the equivalent(s) of the general theory of relativity in today's scientific thinking(s). Or a prediction of what are the big things in science that come at us unexpectedly. In my field, even frameworks that explain the world using extra dimensions of space (in extreme versions) are not unexpected. As a matter of fact we are preparing to discover or exclude them using the data. My hunch (and wish) is that in the laboratory we will be able to segment spacetime so finely that gravity will be studied and understood in a controlled environment, and that gravitational particle physics will be a new field.

Genomics Researcher; Founder & President, J. Craig Venter Science Foundation

Life is ubiquitous throughout the universe. Life on our planet earth most likely is the result of a panspermic event (a notion popularized by the late Francis Crick).

DNA, RNA and carbon based life will be found wherever we find water and look with the right tools. Whether we can prove life happens, depends on our ability to improve remote sensing and to visit faraway systems. This will also depend on whether we survive as a species for a sufficient period of time. As we have seen recently in the shotgun sequencing of the Sargasso Sea, when we look for life here on Earth with new tools of DNA sequencing we find life in abundance in the microbial world. In sequencing the genetic code of organisms that survive in the extremes of zero degrees C to well over boiling water temperatures we begin to understand the breadth of life, including life that can thrive in extremes of caustic conditions of strong acids to basic pH's that would rapidly dissolve human skin. Possible indicators of panspermia are the organisms such as Deinococcus radiodurans, which can survive millions of RADs of ionizing radiation and complete desiccation for years or perhaps millennia. These microbes can repair any DNA damage within hours of being reintroduced into an aqueous environment.

Our human centric view of life is clearly unwarranted. From the millions of genes that we have just discovered in environmental organisms over the past months we learn that a finite number of themes are used over and over again and could have easily evolved from a few microbes arriving on a meteor or on intergalactic dust. Panspermia is how life is spreads throughout the universe and we are contributing to it from earth by launching billions of microbes into space.

Editor-in-Chief, Discover Magazine

I believe that life is common throughout the universe and that we will find another Earth-like planet within a decade.

The mathematics alone ought to be proof to most people (billions of galaxies with billions of stars in each galaxy and around most of those stars are planets). The numbers suggest that for life not to exist elsewhere in the universe is the unlikely scenario. But there is more to this idea than a good chance. We've now found more than 130 planets just looking at nearby stars in our tiny little corner of the Milky Way. The results suggest there are uncountable numbers of planets in our galaxy alone. Some of them are likely to be earthlike, or at least earth-sized, although the vast majority that we've found so far are huge gas giants like Jupiter and Saturn which are unlikely to harbor life. Furthermore, there were four news events this year that made the discovery of life elsewhere extraordinarily more likely.

First, the NASA Mars Rover called Opportunity found incontrovertible evidence that a briny--salty-sea once covered the area where it landed, called Meridiani Planum. The only question about life on Mars now is whether that sea—which was there twice in Martian history—existed long enough for life to form. The Phoenix mission in 2008 may answer that question.

Second, a team of astrophysicists reported in July that radio emissions from Sagittarius B2, a nebula near the center of the Milky Way, indicate the presence of aldehyde molecules, the prebiotic stuff of life. Aldehydes help form amino acids, the fundamental components of proteins. The same scientists previously reported clouds of other organic molecules in space, including glycolaldehyde, a simple sugar. Outer space is thus full of complex molecules—not just atoms—necessary for life. Comets in other solar systems could easily deposit such molecules on planets, as they may have done in our solar system with earth.

Third, astronomers in 2004 found much smaller planets around other stars for the first time. Barbara McArthur at the University of Texas at Austin found a planet 18 times the mass of Earth around 55 Cancri, a star with three other known planets. A team in Portugal announced finding a 14-mass planet. These smaller planets are likely to be rock, not gas. McArthur says, "We're on our way to finding an extrasolar earth."

Fourth, astronomers are not only getting good at finding new planets around other stars, they're getting the resolution of the newest telescopes so good that they can see the dim light from some newly found planets. Meanwhile, even better telescopes are being built, like the large binocular scope on Mt. Graham in Arizona that will see more planets. With light we can analyze the spectrum a new planet reflects and determine what's on that planet—like water. Water, we also discovered recently is abundant in space in large clouds between and near stars.

So everything life needs is out there. For it not to come together somewhere else as it did on earth is remarkably unlikely. In fact, although there are Goldilocks zones in galaxies where life as we know it is most likely to survive (there's too much radiation towards the center of the Milky Way, for example), there are almost countless galaxies out there where conditions could be ripe for life to evolve. This is a golden age of astrophysics and we're going to find life elsewhere.

Psychologist, Autism Research Centre, Cambridge University; Author, The Essential Difference

I am not interested in ideas that cannot in principle be proven or disproven. I am as capable as the next guy in believing in an idea that is not yet proven so long as it could in principle be proven or disproven.

In my chosen field of autism, I believe that the cause will turn out to be assortative mating of two hyper-systemizers. I believe this because we already have 3 pieces of the jig-saw: (1) that fathers of children with autism are more likely to work in the field of engineering (compared to fathers of children without autism); (2) that grandfathers of children with autism—on both sides of the family—were also more likely to work in the field of engineering (compared to grandfathers of children without autism); and (3) that both mothers and fathers of children with autism are super-fast at the embedded figures test, a task requiring analysis of patterns and rules. (Note that engineering is a chosen example because it involves strong systemizing. But other related scientific and technical fields [such as math or physics] would have been equally good examples to study).

We have had these three pieces of the jigsaw since 1997, published in the scientific literature. They do not yet prove the assortative mating theory. They simply point to it being highly likely. Direct tests of the theory are still needed. I will be the first to give up this idea if it is proven wrong, since I'm not in the business of holding onto wrong ideas. But I won't give up the idea simply because it will be unpopular to certain groups (such as those who want to believe that the cause of autism is purely environmental). I will hold onto the idea until it has been properly tested. Popperian science is about being able to let go of an idea when the evidence goes against it, but it is also about being able to hold onto an idea until the evidence has been collected, if you have enough reasons to believe it might be true.

The causes of autism are likely to be complex, including at the very least multiple genes interacting with environmental factors, but the assortative mating theory may describe some contributing factors.

Technology Editor, The Economist

I believe that the radiation emitted by mobile phones is harmless.

My argument is not based so much on the scientific evidence—because there isn't very much of it, and what little there is has either found no effect or is statistically dubious. Instead, it is based on a historical analogy with previous scares about overhead power lines and cathode-ray computer monitors (VDUs). Both were also thought to be dangerous, yet years of research—decades in the case of power lines—failed to find conclusive evidence of harm.

Mobile phones seem to me to be the latest example of what has become a familiar pattern: anecdotal evidence suggests that a technology might be harmful, and however many studies fail to find evidence of harm, there are always calls for more research.

The underlying problem, of course, is the impossibility of proving a negative. During the fuss over genetically modified crops in Europe, there were repeated calls for proof that GM technology was safe. Similarly, in the aftermath of the BSE scare in Britain, scientists were repeatedly asked for proof that beef was safe to eat. But you cannot prove that something has no effect: absence of evidence is not evidence of absence. All you can do is look for evidence of harm. If you don't find it, you can look again. If you still fail to find it, the question is still open: "lack of evidence of harm" means both "safe as far as we can tell" and "we still don't know if it's safe or not". Scientists are often unfairly accused of logic-chopping when they point this out.

Looking back even further, I expect mobile phones will turn out to be merely the latest in a long line of technologies that raised health concerns that subsequently turned out to be unwarranted. In the 19th century, long before the power-line and VDU scares, telegraph wires were accused of affecting the weather, and railway travel was believed to cause nervous disorders.

The irony is that since my belief that mobile phones are safe is based on a historical analysis, I am on no firmer ground scientifically than those who believe mobile phones are harmful. Still, I believe they are safe, though I can't prove it.

Physicist and Nobel Laureate; Director Emeritus, Fermilab; Coauthor, The God Particle

My friend, the theoretical physicist, believed so strongly in String Theory, "It must be true!" He was called to testify in a lawsuit, which contested the claims of String Theory against Quantum Loop Gravity. The lawyer was skeptical. "What makes you such an authority?" he asked. "Oh, I am without question the world's most outstanding theoretical physicist", was the startling reply. It was enough to convince the lawyer to change the subject. However, when the witness came off the stand, he was surrounded by protesting colleagues.

"How could you make such an outrageous claim?" they asked. The theoretical physicist defended, "Fellows, you just don't understand; I was under oath."

To believe without knowing it cannot be proved (yet) is the essence of physics. Guys like Einstein, Dirac, Poincaré, etc. extolled the beauty of concepts, in a bizarre sense, placing truth at a lower level of importance. There are enough examples that I resonated with the arrogance of my theoretical masters who were in effect saying that God, a.k.a. the Master, Der Alte, may have, in her fashioning of the universe, made some errors in favoring of a convenient truth over a breathtakingly wondrous mathematics. This inelegant lack of confidence has heretofore always proved hasty. Thus, when the long respected law of mirror symmetry was violated by weakly interacting but exotic particles, our pain at the loss of simplicity and harmony was greatly alleviated by the discovery of the failure of particle-antiparticle symmetry. The connection was exciting because the simultaneous reflection in a mirror and change of particles to antiparticles seemed to restore a new and more powerful symmetry—"CP" symmetry now gave us a connection of space (mirror reflection) and electric charge. How silly of us to have lost confidence in the essential beauty of nature!

The renewed confidence remained even when it turned out that "CP" was also imperfectly respected. "Surely," we now believe, "there is in store some spectacular, new, unforeseen splendor in all of us." She will not let us down. This we believe, even though we can't prove it.

Publisher, Skeptic magazine; Columnist, Scientific American; Author Science Friction

I believe, but cannot prove...that reality exists over and above human and social constructions of that reality. Science as a method, and naturalism as a philosophy, together form the best tool we have for understanding that reality. Because science is cumulative—that is, it builds on itself in a progressive fashion—we can strive to achieve an ever-greater understanding of reality. Our knowledge of nature remains provisional because we can never know if we have final Truth. Because science is a human activity and nature is complex and dynamic, fuzzy logic and fractional probabilities best describe both nature and the estimations of our approximation toward understanding that nature.

There is no such thing as the paranormal and the supernatural; there is only the normal and the natural and mysteries we have yet to explain.

What separates science from all other human activities is its belief in the provisional nature of all conclusions. In science, knowledge is fluid and certainty fleeting. That is the heart of its limitation. It is also its greatest strength. There are, from this ultimate unprovable assertion, three additional insoluble derivatives.

1. There is no God, intelligent designer, or anything resembling the divinity as proffered by the world's religions (although an extra-terrestrial being of significantly greater intelligence and power than us would be indistinguishable from God).

After thousands of years of the world's greatest minds attempting to prove or disprove the divinity's existence or nonexistence, with little agreement or consensus amongst scholars as to the divinity's ultimate state of being, a reasonable conclusion is that the God question can never be solved and that one's belief, disbelief, or skepticism ultimately rests on a non-rational basis.

2. The universe is ultimately determined, but we have free will.

As with the God question, scholars of considerable intellectual power for many millennia have failed to resolve the paradox of feeling free in a determined universe. One provisional solution is to think of the universe as so complex that the number of causes and the complexity of their interactions make the predetermination of human action pragmatically impossible. We can even put a figure on the causal net of the universe to see just how absurd it is to think we can get our minds around it fully.

It has been computed that in order for a computer in the far future of the universe to resurrect in a virtual reality every person who ever lived or could have lived, with all causal interactions between themselves and their environment, it would need 10 to the power of 10 to the power of 123 bits (a 1 followed by 10^123 zeros) of memory. Suffice it to say that no computer within the conceivable future will achieve this level of power; likewise no human brain even comes close.

The enormity of this complexity leads us to feel as if we are acting freely as uncaused causers, even though we are actually causally determined. Since no set of causes we select as the determiners of human action can be complete, the feeling of freedom arises out of this ignorance of causes. To that extent we may act as if we are free. There is much to gain, little to lose, and personal responsibility follows.

3. Morality is the natural outcome of evolutionary and historical forces, not divine command.

The moral feelings of doing the right thing (such as virtuousness) or doing the wrong thing (such as guilt) were generated by nature as part of human evolution.

Although cultures differ on what they define as right and wrong, the moral feelings of doing the right or wrong thing are universal to all humans. Human universals are pervasive and powerful, and include at their core the fact that we are, by nature, moral and immoral, good and evil, altruistic and selfish, cooperative and competitive, peaceful and bellicose, virtuous and non-virtuous. Individuals and groups vary on the expression of such universal traits, but everyone has them. Most people, most of the time, in most circumstances, are good and do the right thing for themselves and for others. But some people, some of the time, in some circumstances, are bad and do the wrong thing for themselves and for others.

As a consequence, moral principles are provisionally true, where they apply to most people, in most cultures, in most circumstances, most of the time. At some point in the last 10,000 years (around the time of writing and the shift from bands and tribes to chiefdoms and states around 5,000 years ago) religions began to codify moral precepts into moral codes, and political states began to codify moral precepts into legal codes.

In conclusion, I believe, but cannot prove...that reality exists and science is the best method for understanding it, there is no God, the universe is determined but we are free, morality evolved as an adaptive trait of humans and human communities, and that ultimately all of existence is explicable through science.

Of course, I could be wrong...

Money Manager and Science Philanthropist

The great breakthrough will involve a new understanding of time...that moving through time is not free, and that consciousness itself will be seen to only be a time sensor, adding to the other sensors of light and space.

Psychologist; Director, Quality of Life Research Center, Claremont Graduate University; Author, Flow

When I first read your question, I was sure it was a trick—after all, almost nothing I believe in I can prove. I believe the earth is round, but I cannot prove it, nor can I prove that the earth revolves around the sun or that the naked fig tree in the garden will have leaves in a few months. I can't prove quarks exist or that there was a Big Bang—all of these and millions of other beliefs are based on faith in a community of knowledge whose proofs I am willing to accept, hoping they will accept on faith the few measly claims to proof I might advance.

But then I realized—after reading some of the early postings—that every one else has assumed implicitly that the "you" in: "even if you cannot prove it" referred not to the individual respondent, but to the community of knowledge—it actually stood for "one" rather than for "you". That everyone seems to have understood this seems to me a remarkable achievement, a merging of the self with the collective that only great religions and profound ideologies occasionally achieve.

So what do I believe that no one else can prove? Not much, although I do believe in evolution, including cultural evolution, which means that I tend to trust ancient beliefs about good and bad, the sacred and the profane, the meaningful and the worthless—not because they are amenable to proof, but because they have been selected over time and in different situations, and therefore might be worthy of belief.

As to the future, I will follow the cautious weather forecaster who announces: "Tomorrow will be a beautiful day, unless it rains." In other words, I can see all sorts of potentially wonderful developments in human consciousness, global solidarity, knowledge and ethics; however, there are about as many trends operating towards opposite outcomes: a coarsening of taste, reduction to least common denominator, polarization of property, power, and faith. I hope we will have the time and opportunity to understand which policies lead to which outcomes, and then that we will have the motivation and the courage to implement the more desirable alternatives.

Physicist, Perimeter Institute; Author, Three Roads to Quantum Gravity

I am convinced that quantum mechanics is not a final theory. I believe this because I have never encountered an interpretation of the present formulation of quantum mechanics that makes sense to me. I have studied most of them in depth and thought hard about them, and in the end I still can't make real sense of quantum theory as it stands. Among other issues, the measurement problem seems impossible to resolve without changing the physical theory.

Quantum mechanics must then be an approximate description of a more fundamental physical theory. There must then be hidden variables, which are averaged over to derive the approximate, probabilistic description which is quantum theory. We know from the experimental falsifications of the Bell inequalities that any theory which agrees with quantum mechanics on a range of experiments where it has been checked must be non-local. Quantum mechanics is non-local, as are all proposals for replacing it with something that makes more sense. So any additional hidden variables must be non-local. But I believe we can say more. I believe that the hidden variables represent relationships between the particles we do see, which are hidden because they are non-local and connect widely separated particles.

This fits in with another core belief of mine, which derives from general relativity, which is that the fundamental properties of physical entities are a set of relationships, which evolve dynamically. There are no intrinsic, non-relational properties, and there is no fixed background, such as Newtonian space and time, which exists just to give things properties.

One consequence of this is that the geometry of space and time is also only an approximate, emergent description, applicable only on scales too large to see the fundamental degrees of freedom. The fundamental relations are non-local with respect to the approximate notion of locality that emerges at the scale where it becomes sensible to talk about things located in a geometry.

Putting these together, we see that quantum uncertainty must be a residue of the resulting non-locality, which restricts our ability to predict the future of any small region of the universe. Hbar, the fundamental constant of quantum mechanics that measures the quantum uncertainty, is related to N, the number of degrees of freedom in the universe. A reasonable conjecture is that hbar is proportional to the inverse of the square root of N.

But how are we to describe physics, if it is not in terms of things moving in a fixed spacetime? Einstein struggled with this, and my only answer is the one he came to near the end of his life: fundamental physics must be discrete, and its description must be in terms of algebra and combinatorics.

Finally, what of time? I have been also unable to make sense of any of the proposals to do away with time as a fundamental aspect of our description of nature. So I believe in time, in the sense of causality. I also doubt that the "big bang" is the beginning of time, I strongly suspect that our history extends backwards before the big bang.

Finally, I believe that in the near future, we will be able to make predictions based on these ideas that will be tested in real experiments.

< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2005 by
Edge Foundation, Inc
All Rights Reserved.