1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10


"What Do You Believe Is True Even Though You Cannot Prove It?"

Printer-friendly version


Alun Anderson

Chris W. Anderson

Philip W. Anderson

Scott Atran

Simon Baron-Cohen

John Barrow

Gregory Benford

Jesse Bering

Susan Blackmore

Ned Block

Paul Bloom

David Buss

William Calvin

Leo Chalupa

Mihaly Csikszentmihalyi

Paul Davies

Richard Dawkins

Stanislas Deheane

Daniel C. Dennett

Keith Devlin

Jared Diamond

Denis Dutton

Esther Dyson

Freeman Dyson

George Dyson

Jeffrey Epstein

Todd Feinberg

Christine Finn

Kenneth Ford

Howard Gardner

David Gelernter

Neil Gershenfeld

Steve Giddings

Daniel Gilbert

Rebecca Goldstein

Daniel Goleman

Brian Goodwin

Alison Gopnik

Jonathan Haidt

Haim Harari

Judith Rich Harris

Sam Harris

Marc D. Hauser

Marti Hearst

W. Daniel Hillis

Donald Hoffman

John Horgan

Verena Huber-Dyson

Nicholas Humphrey

Piet Hut

Stuart Kauffman

Alan Kay

Kevin Kelly

Stephen Kosslyn

Kai Krause

Lawrence Krauss

Ray Kurzweil

Jaron Lanier

Leon Lederman

Janna Levin

Joseph LeDoux

Seth Lloyd

Benoit Mandelbrot

Gary Marcus

Lynn Margulis

John McCarthy

Pamela McCorduck

Ian McEwan

John McWhorter

Thomas Metzinger

Oliver Morton

David Myers

Randolph Nesse

Tor Nørretranders

Martin Nowak

James O'Donnell

Alex Pentland

Irene Pepperberg

Stephen Petranek

Clifford Pickover

Steven Pinker

Jordan Pollack

Carolyn Porco

Robert R. Provine

Martin Rees

Howard Rheingold

Carlo Rovelli

Rudy Rucker

Douglas Rushkoff

Karl Sabbagh

Robert Sapolsky

Roger Schank

Jean Paul Schmetz

Stephen H. Schneider

Gino Segre

Martin E. P. Seligman

Terrence Sejnowski

Rupert Sheldrake

Michael Shermer

Charles Simonyi

John R. Skoyles

Lee Smolin

Elizabeth Spelke

Maria Spiropulu

Tom Standage

Paul Steinhardt

Bruce Sterling

Leonard Susskind

Nassim Taleb

Timothy Taylor

Arnold Trehub

Robert Trivers

J. Craig Venter

Alexander Vilenkin

Margaret Wertheim

Donald I. Williamson

Ian Wilmut

Ellen Winner

Anton Zeilinger


Biological Mathematician, Harvard University; Director, Center for Evolutionary Dynamics

I believe the following aspects of evolution to be true without knowing how to turn them into (respectable) research topics.

Important steps in evolution are robust. Multi-cellularity evolved at least ten times. There are several independent origins of eusociality. There were a number of lineages leading from primates to humans. If our ancestors would not have evolved language, somebody else would have.

Cooperation and language define humanity. Every special trait of humans is derivative of language.

Mathematics is a language and therefore a product of evolution.

Physicist, Computer Scientist; Chairman, Applied Minds, Inc.; Author, The Pattern on the Stone

I know that it sounds corny, but I believe that people are getting better. In other words, I believe in moral progress. It is not a steady progress, but there is a long-term trend in the right direction—a two steps forward, one step back kind of progress.

I believe, but cannot prove, that our species is passing through a transitional stage, from being animals to being true humans. I do not pretend to understand what true humans will be like, and I expect that I would not even understand it if I met them. Yet, I believe that our own universal sense of right and wrong is pointing us in the right direction, and that it is the direction of our future.

I believe that ten thousand years from now, people (or whatever we are by then) will be more empathetic and more altruistic than we are. They will trust each other more, and for good reason. They will take better care of each other. They be more thoughtful about the broader consequences of their actions. They will take better care of their future than we do of ours.

Psychologist and Neuroscientist, University of Maryland; Author, Laughter

Human Behavior is Unconsciously Controlled.

Until proven otherwise, why not assume that consciousness does not play a role in human behavior? Although it may seem radical on first hearing, this is actually the conservative position that makes the fewest assumptions. The null position is an antidote to philosopher's disease, the inappropriate attribution of rational, conscious control over processes that may be irrational and unconscious. The argument here is not that we lack consciousness, but that we over-estimate the conscious control of behavior. I believe this statement to be true. But proving it is a challenge because it's difficult to think about consciousness. We are misled by an inner voice that generates a reasonable but often fallacious narrative and explanation of our actions. That the beam of conscious awareness that illuminates our actions is on only part of the time further complicates the task. Since we are not conscious of our state of unconsciousness, we vastly overestimate the amount of time that we are aware of our own actions, whatever their cause.

My thinking about unconscious control was shaped by my field studies of the primitive play vocalization of laughter. When I asked people to explain why they laughed in a particular situation, they would concoct some reasonable fiction about the cause of their behavior—"someone did something funny," "it was something she said," "I wanted to put her at ease." Observations of social context showed that such explanations were usually wrong. In clinical settings, such post hoc misattributions would be termed "confabulations," honest but flawed attempts to explain one's actions.

Subjects also incorrectly presumed that laughing is a choice and under conscious control, a reason for their confident, if bogus, explanations of their behavior. But laughing is not a matter speaking "ha-ha," as we would choose a word in speech. When challenged to laugh on command, most subjects could not do so. In certain, usually playful, social contexts, laughter simply happens. However, this lack of voluntary control does not preclude a lawful pattern of behavior. Laughter appears at those places where punctuation would appear in a transcription of a conversation—laughter seldom interrupts the phrase structure of speech. We may say, "I have to go now—ha-ha," but rarely, "I have to—ha-ha—go now." This punctuation effect is highly reliable and requires the coordination of laughing with the linguistic structure of speech, yet it is performed without conscious awareness of the speaker. Other airway maneuvers such as breathing and coughing punctuate speech and are performed without speaker awareness.

The discovery of lawful but unconsciously controlled laughter produced by people who could not accurately explain their actions led me to consider the generality of this situation to other kinds of behavior. Do we go through life listening to an inner voice that provides similar confabulations about the causes of our action? Are essential details of the neurological process governing human behavior inaccessible to introspection? Can the question of animal consciousness be stood on its head and treated in a more parsimonious manner? Instead of considering whether other animals are conscious, or have a different, or lesser consciousness than our own, should we question if our behavior is under no more conscious control than theirs? The complex social order of bees, ants, and termites documents what can be achieved with little, if any, conscious control as we think of it. Is machine consciousness possible or even desirable? Is intelligent behavior a sign of conscious control? What kinds of tasks require consciousness? Answering these questions requires an often counterintuitive approach to the role, evolution and development of consciousness.

Psychologist, Yale University; Author, Descartes' Baby

John MacNamara once proposed that children come to learn about right and wrong, good and evil, in much the same way that they learn about geometry and mathematics. Moral development is not merely cultural learning, and it does not arise from innate principles that have evolved through natural selection. It is not like the development of language or sexual preference or taste in food.

Instead, moral development involves the construction of a intricate formal system that makes contact with the external world in a significant way. This cannot be entirely right. We know that gut-feelings, such as reactions of empathy or disgust, have a major influence on how children and adults reason about morality. And no serious theory of moral development can ignore the role of natural selection in shaping our moral intuitions. But what I like about Macnamara's proposal is that it allows for moral realism. It allows for the existence of moral truths that people come to discover, just as we come to discover truths of mathematics. We can reject the nihilistic position (help by many researchers) that our moral intuitions are nothing more than accidents of biology or culture.

And so I believe (though I cannot prove it) that the development of moral reasoning is the same sort of process as the development of mathematical reasoning.

Psychologist, Emeritus Professor, Stanford University; Author, Shyness

I believe that the prison guards at the Abu Ghraib Prison in Iraq, who worked the night shift in Tier 1A, where prisoners were physically and psychologically abused, had surrendered their free will and personal responsibility during these episodes of mayhem.

But I could not prove it in a court of law. These eight army reservists were trapped in a unique situation in which the behavioral context came to dominate individual dispositions, values, and morality to such an extent that they were transformed into mindless actors alienated from their normal sense of personal accountability for their actions—at that time and place.

The "group mind" that developed among these soldiers was created by a set of known social psychological conditions, some of which are nicely featured in Golding's Lord of the Flies. The same processes that I witnessed in my Stanford Prison Experiment were clearly operating in that remote place: Deindividuation, dehumanization, boredom, groupthink, role-playing, rule control, and more. Beyond the relatively benign conditions in my study, in that Iraqi prison, the guards experienced extreme fatigue and exhaustion from working 12-hour shifts, 7 days a week, for over a month at a time with no breaks.

There was fear of being killed from mortar and grenade attacks and from prisoners rioting. There was revenge for buddies killed, and prejudice against these foreigners for their strange religion and cultural traditions. There was encouragement by staff "to soften up" the detainees for interrogation because Tier 1A was the Interrogation-Soft Torture center of that prison. Already in place when these young men and women arrived there for their tour of duty were abusive practices that had been "authorized" from the top of the chain of command: Use of nakedness as a humiliation tactic, sensory and sleep deprivation, stress positions, dog attacks, and more.

In addition to the situational variables and processes operating in that behavioral setting were a serious of systemic processes that created the barrel into which these good soldiers were forced to live and work. Most of the reports of independent investigation committees cite a failure of leadership, lack of leadership, or irresponsible leadership as factors that contributed to these abuses. Then there was lack of mission-specific training of the guards, no oversight, no accountability to senior officers, poor resources, overcrowded facilities, confusing commands from civilian interrogators at odds with the CIA, military intelligence and other agencies and agents all working in Tier 1A without clear communication channels and much confusion.

I was recently an expert witness for the defense of Sgt. Ivan "Chip" Frederick in his Baghdad trial. Before the trial, I spent a day with him, giving him an in-depth interview, checking all background information, and arranging for him to be psychologically assessed by the military. He is one of the alleged "bad apples" who these investigations have labeled as "morally corrupt." What did he bring into that situation and what did that situation bring into him?

He seemed very much to be a normal young American. His psych assessments revealed no sign of any pathology, no sadistic tendencies, and all his psych assessment scores are in the normal range, as is his intelligence. He had been a prison guard at a small minimal security prison where he performed for many years without incident. So there is nothing in his background, temperament, or disposition that could have been a facilitating factor for the abuses he committed at the Abu Ghraib Prison.

After a four-day long trial, part of which included my testimony elaborating on the points noted here, the Judge took barely one hour to find him guilty of all eight counts and to sentence Sgt. Frederick to 8 years in prison, starting in solitary confinement in Kuwait, dishonorable discharge, broken in rank from Sgt. to Pvt., loss of his 20 years retirement income and his salary. This military judge held Frederick personally responsible for the abuses, because he had acted out of free will to intentionally harm these detainees since he was not forced into these acts, was not mentally incompetent, or acting in self-defense. All of the situational and systemic determinants of his behavior and that of his buddies were disregarded and given a zero weighting coefficient in assessing causal factors.

The real reason for the heavy sentence was the photographic documentation of the undeniable abuses along with the smiling abusers in their "trophy photos." It was the first time in history that such images were publicly available of what goes on in many prisons around the world, and especially in military prisons. They humiliated the military, and the entire chain of command all the way up the ladder to the White House. Following this exposure, investigations of all American military prisons in that area of the world uncovered similar abuses and worse, many murders of prisoners. Recent evidence has revealed that similar abuses started taking place again in Abu Ghraib prison barely one month after these disclosures became public—when the "Evil Eight Culprits" were in other prisons—as prisoners.

Based on more than 30 years of research on "The Lucifer Effect"—the transformation of good people into perpetrators of evil—I believe that there are powerful situational and systemic forces operating on individuals in certain situations that can undercut a lifetime of morality and rationality. The Dionysian aspect of human nature can triumph over the Apollonian, not only during Mardi Gras, but in dynamic group settings like gang rapes, fraternity hazing, mob riots, and in that Abu Ghraib prison. I believe in that truth in general and especially in the case of Sgt. Frederick, but I was not able to prove it in a military court of law.

Editor-in-Chief, New Scientist

Strangely, I believe that cockroaches are conscious. That is probably an unappealing thought to anyone who switches on a kitchen light in the middle of the night and finds a family of roaches running for cover. But it's really shorthand for saying that I believe that many quite simple animals are conscious, including more attractive beasts like bees and butterflies.

I can't prove that they are, but I think in principle it will be provable one day and there's a lot to be gained about thinking about the worlds of these relatively simple creatures, both intellectually—and even poetically. I don't mean that they are conscious in even remotely the same way as humans are; if that we were true the world would be a boring place. Rather the world is full of many overlapping alien consciousnesses.

Why do I think they might be multiple forms of conscious out there? Before becoming a journalist I spent 10 years and a couple of post-doctoral fellowships getting inside the sensory worlds of a variety of insects, including bees and cockroaches. I was inspired by A Picture Book of Invisible Worlds, a slim out-of-print volume by Jakob von Uexkull (1864-1944).

The same book had also inspired Niko Tinbergen and Konrad Lorenz, the Nobel Prize winners who founded the field of ethology (animal behaviour). Von Uexkull studied the phenomenal world of animals, what he called their "umwelt", the worlds around animals as they themselves perceive them. Everything that an animals senses means something to it, for it has evolved to fit and create its world. Study of animals and their sensory worlds have now morphed into the field of sensory ecology, or on a wilder path, the newer science of biosemiotics.

I studied time studying how honey bees could find their way around my laboratory room (they had learnt to fly in through a small opening in the window) and find a hidden source of sugar. Bees could learn all about the pattern of key features in the room and would show they were confused if objects were moved around when they were out of the room. They were also easily distracted by certain kinds of patterns, particularly ones with lots of points and lines that had very abstract similarities to the patterns on flowers, as well as by floral scents, and by sudden movements that signalled danger. In contrast, when they were busy gorging on the sugar almost nothing could distract them, making it possible for myself to paint a little number on their backs so I distinguish individual bees.

To make sense of this ever changing behaviour, with its shifting focus of attention, I always found it simplest to figure out what was happening by imagining the sensory world of the bee, with its eye extraordinarily sensitive to flicker and colours we can't see, as a "visual screen" in the same way I can sit back and "see" my own visual screen of everything happening around me, with sights and sounds coming in and out of prominence. The objects in the bees world have significances or "meaning" quite different from our own, which is why its attention is drawn to things we would barely perceive.

That's what I mean by consciousness—the feeling of "seeing" the world and its associations. For the bee, it is the feeling of being a bee. I don't mean that a bee is self-conscious or spends time thinking about itself. But of course the problem of why the bee has its own "feeling" is the same incomprehensible "hard problem" of why the activity of our nervous system gives rise to our own "feelings".

But at least the bee's world is very visual and capable of being imagined. Some creatures live in sensory worlds that are much harder to access. Spiders that hunt at night live in a world dominated by the detection of faint vibration and of the tiniest flows of air that allow them to see fly passing by in pitch darkness. Sensory hairs that cover their body give them a sensitivity to touch far more finely grained than we can possibly feel through our own skin.

To think this way about simple creatures is not to fall into the anthropomorphic fallacy. Bees and spiders live in their own world in which I don't see human-like motives. Rather it is a kind of panpsychism, which I am quite happy to sign up to, at least until we know a lot more about the origin of consciousness. That may take me out of the company of quite a few scientists who would prefer to believe that a bee with a brain of only a million neurones must surely be a collection of instinctive reactions with some simple switching mechanism between then, rather have some central representation of what is going on that might be called consciousness. But it leaves me in the company of poets who wonder at the world of even lowly creatures.

"In this falling rain,
where are you off to

wrote the haiku poet Issa.

And as for the cockroaches, they are a little more human than the spiders. Like the owners of the New York apartments who detest them, they suffer from stress and can die from it, even without injury. They are also hierarchical and know their little territories well. When they are running for it, think twice before crushing out another world.

Science writer and Commentator; Author, Pythagoras' Trousers

We all believe in something and science itself is premised on a whole set of beliefs. Above all, science is founded on the belief that things are comprehensible and that by the ingenuity of our minds and the probing of ever more subtle instruments we will ultimately come to know It All. But is the All inherently knowable? I believe, though I cannot prove it, that there will always be things we do not know—large things, small things, interesting things and important things.

If theoretical physics is any guide we might suppose that science is a march towards a finite goal. For the past few decades theoretical physicists have been searching for a so-called "Theory of Everything," what Nobel laureate Stephen Weinberg has also called a "Final Theory." This "ultimate" set of equations that would tie together all the fundamental forces which physicists recognize today—the four essential powers of gravity, electromagnetism, and the nuclear forces inside the cores of atoms. But such theory—if we are lucky enough to extract it from the current mass of competing contenders—would not tell us anything about how proteins form or how DNA came into being. Less still would it illuminate the machinations of a living cell, or the workings of the human mind. Frankly, a "theory of everything" would not even help us to understand how snowflakes form.

In an age when we have discovered the origin of the universe and observed the warping of space and time it is shocking to hear that scientists do not understand something as "paltry" as the formation of ice crystals. But that is indeed the case.

Kenneth Libbrecht, chairman of the Cal tech physics department is a world expert on ice crystal formation, a hobby project he took on more than twenty years ago precisely because as he puts it "there are six billion people on this planet, and I thought that at least one of us should understand how snow crystals form." After two decades of meticulous experimentation inside specially constructed pressurized chambers Libbrecht believes he has made some headway in understanding how ice crystallizes at the edge of the quasi-liquid layer which surrounds all ice structures. He calls his theory "structure dependent attachment kinetics," but he is quick to point out that this is far from the ultimate answer. The transition from water to ice is a mysteriously complex process that has engaged minds as brilliant as Johannes Kepler and Michael Faraday. Libbrecht hopes he can add the small next step in our knowledge of this wondrous substance that is so central to life itself.

Studying ice crystals is Libbrecht's hobby—in his "day job" he is one of the hundreds of physicists who are working on the LIGO detector which is designed to detect gravitational waves that are believed to emanate from black holes and other massive cosmological entities. Gravity waves have been predicted by the general theory of relativity, and hence physicists believe they must exist. Here the matter of belief has literally bought into being a an extremely expensive machine. Any successful theory of everything will have to account for gravity, the most mysterious of all the forces and the one physicists least understand. Like the other three forces, physicists believe gravity must ultimately manifest itself in both wave and particle forms. LIGO is designed to detect such waves, if indeed they do exist.

Some years ago the science writer John Horgan wrote a marvelously provocative book in which he suggested that science was coming to an end, all the major theoretical edifices now supposedly being in place. Horgan was right in one sense, for high-energy physics may be on the verge of achieving its final unification. But in so many other areas, science is just beginning. Only now are we acquiring the scientific tools and techniques to begin to investigate how our atmosphere works, how ecological systems function, how genes create proteins, how cells evolve, and how brains work. The very success of "fundamental science" has opened doors undreamed of by earlier generations and in many ways it seems there is more than ever that we do not know. At a time when journals tout theories about how to create entire universes it is easy to imagine that science has grasped the whole of reality. In truth our ignorance is vast—and personally I believe it will always be so.

Rather than pretend we will soon know it all, I suggest we might adopt instead the attitude of the great fifteenth century champion of science, Cardinal Nicholas of Cusa. Cusa titled his major work On Learned Ignorance. A complex and poetic fusion of mathematics, scientific speculation and Catholic theology, Cusa puts forward in this book the view that we can never —even in principle—know everything. Only God can do that. We mortals, confined within the world itself can never see it whole, from the outside as it were. But while we cannot know it All, Cusa insists we can know a great deal and that science and mathematics will take our knowledge forward. Our ignorance then can be ever more learned. Not omniscience then, but an ever more subtle and insightful unknowing is the goal that Cusa advocated. In the humble snowflakes Ken Libbrecht studies we have the perfect metaphor for such a view—though they melt on your tongue, each tiny crystal of ice encapsulates a universe whose basic rules we have barely begun to unravel.

Physicist; Retired director, American Institute of Physics; Author, The Quantum World

I believe that microbial life exists elsewhere in our galaxy.

I am not even saying "elsewhere in the universe." If the proposition I believe to be true is to be proved true within a generation or two, I had better limit it to our own galaxy. I will bet on its truth there.

I believe in the existence of life elsewhere because chemistry seems to be so life-striving and because life, once created, propagates itself in every possible direction. Earth's history suggests that chemicals get busy and create life given any old mix of substances that includes a bit of water, and given practically any old source of energy; further, that life, once created, spreads into every nook and cranny over a wide range of temperature, acidity, pressure, light level, and so on.

Believing in the existence of intelligent life elsewhere in the galaxy is another matter. Good luck to the SETI people and applause for their efforts, but consider that microbes have inhabited Earth for at least 75 percent of its history, whereas intelligent life has been around for but the blink of an eye, perhaps 0.02 percent of Earth's history (and for nearly all of that time without the ability to communicate into space). Perhaps intelligent life will have staying power. We don't know. But we do know that microbial life has staying power.

Now to a supposition: that Mars will be found to have harbored life and harbors life no more. If this proves to be the case, it will be an extraordinarily sobering discovery for humankind, even more so than the view of our fragile blue ball from the Moon, even more so than our removal from the center of the universe by Copernicus, Galileo, and Newton—perhaps even more so than the discovery of life elsewhere in the galaxy.

Cognitive Scientist, UC, Irvine; Author, Visual Intelligence

I believe that consciousness and its contents are all that exists. Spacetime, matter and fields never were the fundamental denizens of the universe but have always been, from their beginning, among the humbler contents of consciousness, dependent on it for their very being.

The world of our daily experience—the world of tables, chairs, stars and people, with their attendant shapes, smells, feels and sounds—is a species-specific user interface to a realm far more complex, a realm whose essential character is conscious. It is unlikely that the contents of our interface in any way resemble that realm. Indeed the usefulness of an interface requires, in general, that they do not. For the point of an interface, such as the windows interface on a computer, is simplification and ease of use. We click icons because this is quicker and less prone to error than editing megabytes of software or toggling voltages in circuits. Evolutionary pressures dictate that our species-specific interface, this world of our daily experience, should itself be a radical simplification, selected not for the exhaustive depiction of truth but for the mutable pragmatics of survival.

If this is right, if consciousness is fundamental, then we should not be surprised that, despite centuries of effort by the most brilliant of minds, there is as yet no physicalist theory of consciousness, no theory that explains how mindless matter or energy or fields could be, or cause, conscious experience. There are, of course, many proposals for where to find such a theory—perhaps in information, complexity, neurobiology, neural darwinism, discriminative mechanisms, quantum effects, or functional organization. But no proposal remotely approaches the minimal standards for a scientific theory: quantitative precision and novel prediction. If matter is but one of the humbler products of consciousness, then we should expect that consciousness itself cannot be theoretically derived from matter. The mind-body problem will be to physicalist ontology what black-body radiation was to classical mechanics: first a goad to its heroic defense, later the provenance of its final supersession.

The heroic defense will, I suspect, not soon be abandoned. For the defenders doubt that a replacement grounded in consciousness could attain the mathematical precision or impressive scope of physicalist science. It remains to be seen, of course, to what extent and how effectively mathematics can model consciousness. But there are fascinating hints: According to some of its interpretations, the mathematics of quantum theory is itself, already, a major advance in this project. And perhaps much of the mathematical progress in the perceptual and cognitive sciences can also be so interpreted. We shall see.

The mind-body problem may not fall within the scope of physicalist science, since this problem has, as yet, no bona fide physicalist theory. Its defenders can surely argue that this penury shows only that we have not been clever enough or that, until the right mutation chances by, we cannot be clever enough, to devise a physicalist theory. They may be right. But if we assume that consciousness is fundamental then the mind-body problem transforms from an attempt to bootstrap consciousness from matter into an attempt to bootstrap matter from consciousness. The latter bootstrap is, in principle, elementary: Matter, spacetime and physical objects are among the contents of consciousness.

The rules by which, for instance, human vision constructs colors, shapes, depths, motions, textures and objects, rules now emerging from psychophysical and computational studies in the cognitive sciences, can be read as a description, partial but mathematically precise, of this bootstrap. What we lose in this process are physical objects that exist independent of any observer. There is no sun or moon unless a conscious mind perceives them, for both are constructs of consciousness, icons in a species-specific user interface. To some this seems a patent absurdity, a reductio of the position, readily contradicted by experience and our best science. But our best science, our theory of the quantum, gives no such assurance. And experience once led us to believe the earth flat and the stars near. Perhaps, in due time, mind-independent objects will go the way of flat earth.

This view obviates no method or result of science, but integrates and reinterprets them in its framework. Consider, for instance, the quest for neural correlates of consciousness (NCC). This holy grail of physicalism can, and should, proceed unabated if consciousness is fundamental, for it constitutes a central investigation of our user interface. To the physicalist, an NCC is, potentially, a causal source of consciousness. If, however, consciousness is fundamental, then an NCC is a feature of our interface correlated with, but never causally responsible for, alterations of consciousness. Damage the brain, destroy the NCC, and consciousness is, no doubt, impaired. Yet neither the brain nor the NCC causes consciousness. Instead consciousness constructs the brain and the NCC. This is no mystery. Drag a file's icon to the trash and the file is, no doubt, destroyed. Yet neither the icon nor the trash, each a mere pattern of pixels on a screen, causes its destruction. The icon is a simplification, a graphical correlate of the file's contents (GCC), intended to hide, not to instantiate, the complex web of causal relations.

Philosopher of Art, University of Canterbury, New Zealand; Editor, Arts & Letters Daily

In a 1757 essay, philosopher David Hume argued that because "the general principles of taste are uniform in human nature" the value of some works of art might be essentially eternal. He observed that the "same Homer who pleased at Athens and Rome two thousand years ago, is still admired at Paris and London." The works that manage to endure over millennia, Hume thought, do so precisely because they appeal to deep, unchanging features of human nature.

Some unique works of art, for example, Beethoven's Pastoral Symphony, possess this rare but demonstrable capacity to excite the human mind across cultural boundaries and through historic time. I cannot prove it, but I think a small body of such works—by Homer, Bach, Shakespeare, Murasaki Shikibu, Vermeer, Michelangelo, Wagner, Jane Austen, Sophocles, Hokusai—will be sought after and enjoyed for centuries or millennia into the future. As much as fashions and philosophies are bound to change, these works will remain objects of permanent value to human beings.

These epochal survivors of art are more than just popular. The majority of works of popular art today are not inevitably shallow or worthless, but they tend to be easily replaceable. In the modern mass art system, artistic forms endure, while individual works drop away. Spy thrillers, romance novels, pop songs, and soap operas are daily replaced by more thrillers, romance novels, pop songs, and soap operas. In fact, the ephemeral nature of mass art seems more pronounced than ever: most popular works are incapable of surviving even a year, let alone a couple of generations. It's different with art's classic survivors: even if they began, as Sophocles' and Shakespeare's did, as works of popular art, they set themselves apart in their durable appeal: nothing kills them. Audiences keep coming back to experience these original works themselves.

Against the idea of permanent aesthetic values is cultural relativism, which is taught as the default orthodoxy in many university departments. Aesthetic values have been widely construed by academics as merely contingent reflections of local social and economic conditions. Beauty, if not in the eye of the beholder, has been misconstrued as merely in the eyes of society, a conditioning that determines values of cultural seeing. Such veins of explanation often include no small amount of cynicism: why do people go to the opera? Oh, to show off their furs. Why are they thrilled by famous paintings? Because they're worth millions. Beneath such explanations is a denial of intrinsic aesthetic merit.

Such aesthetic relativism is decisively refuted, as Hume understood, by the cross-cultural appeal of a small class of art objects over centuries: Mozart packs Japanese concerts halls, as Hiroshige does Paris galleries, while new productions of Shakespeare in every major language of the world are endless. And finally, it is beginning to look as though empirical psychology is equipped to address the universality of art. For example, evolutionary psychology is being used by literary scholars to explain the persistent themes and plot devices in fiction. The rendering of faces, bodies, and landscape preferences in art is amenable to psychological investigation. The structure of musical perception is now open to experimental analysis as never before. Poetic experience can be elucidated by the insights of contemporary linguistics. None of this research promises a recipe for creating great art, but it can throw light on what we already know about aesthetic pleasure.

What's going on most days in the Metropolitan Museum and most nights at Lincoln Center involves aesthetic experiences that will be continuously revived and relived by our descendents into an indefinite future. In a way, this makes the creations of the greatest artists as much permanent achievements as the discoveries of greatest scientists. That much I think I know. The question we should now ask is, What makes this possible? What is it about the highest works of art that gives them eternal appeal?

Psychologist, Hope College; Author, Intuition

As a Christian monotheist, I start with two unproven axioms:

1. There is a God.

2. It's not me (and it's also not you).

Together, these axioms imply my surest conviction: that some of my beliefs (and yours) contain error. We are, from dust to dust, finite and fallible. We have dignity but not deity.

And that is why I further believe that we should

a) hold all our unproven beliefs with a certain tentativeness (except for this one!),

b) assess others' ideas with open-minded skepticism, and

c) freely pursue truth aided by observation and experiment.

This mix of faith-based humility and skepticism helped fuel the beginnings of modern science, and it has informed my own research and science writing. The whole truth cannot be found merely by searching our own minds, for there is not enough there. So we also put our ideas to the test. If they survive, so much the better for them; if not, so much the worse.

Within psychology, this "ever-reforming" process has many times changed my mind, leading me now to believe, for example, that newborns are not so dumb, that electro convulsive therapy often alleviates intractable depression, that America's economic growth has not improved our morale, that the automatic unconscious mind dwarfs the conscious mind, that traumatic experiences rarely get repressed, that most folks don't suffer low self-esteem, and that sexual orientation is not a choice.

< previous

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10

next >

John Brockman, Editor and Publisher
Russell Weinberger, Associate Publisher

contact: [email protected]
Copyright © 2005 by
Edge Foundation, Inc
All Rights Reserved.