Page: [previous] -1 - 2 - 3 - 4 - 5 - 6 - 7 - [next]

"What's Your Law"

Printer version

"So now, into the breach comes John Brockman, the literary agent and gadfly, whose online scientific salon,, has become one of the most interesting stopping places on the Web. He begins every year by posing a question to his distinguished roster of authors and invited guests. Last year he asked what sort of counsel each would offer George W. Bush as the nation's top science adviser. This time the question is "What's your law?"
"John Brockman, a New York literary agent, writer and impresario of the online salon Edge, figures it is time for more scientists to get in on the whole naming thing...As a New Year's exercise, he asked scores of leading thinkers in the natural and social sciences for "some bit of wisdom, some rule of nature, some law-like pattern, either grand or small, that you've noticed in the universe that might as well be named after you."
"John Brockman has posted an intriguing question on his Edge website. Brockman advises his would-be legislators to stick to the scientific disciplines."
"Everything answers to the rule of law. Nature. Science. Society. All of it obeys a set of codes...It's the thinker's challenge to put words to these unwritten rules. Do so, and he or she may go down in history. Like a Newton or, more recently, a Gordon Moore, who in 1965 coined the most cited theory of the technological age, an observation on how computers grow exponentially cheaper and more powerful... Recently, John Brockman went looking for more laws."

"What are the pressing scientific issues for the nation and the world, and what is your advice on how I can begin to deal with them?"
"In 2002, he [Brockman] asked respondents to imagine that they had been nominated as White House science adviser and that President Bush had sought their answer to 'What are the pressing scientific issues for the nation and the world, and what is your advice on how I can begin to deal with them?'Here are excerpts of some of the responses. "
"Edge's combination of political engagement and blue-sky thinking makes stimulating reading for anyone seeking a glimpse into the next decade."
"Dear W: Scientists Offer
President Advice on Policy"
"There are 84 responses, ranging in topic from advanced nanotechnology to the psychology of foreign cultures, and lots of ideas regarding science, technology, politics, and education."

"What's Your Question?"
"Brockman's thinkers of the 'Third Culture,' whether they, like Dawkins, study evolutionary biology at Oxford or, like Alan Alda, portray scientists on Broadway, know no taboos. Everything is permitted, and nothing is excluded from this intellectual game."
"The responses are generally written in an engaging, casual style (perhaps encouraged by the medium of e-mail), and are often fascinating and thought - provoking.... These are all wonderful, intelligent questions..."

What Now?
  "We are interested in ‘thinking smart,'" declares Brockman on the site, "we are not interested in the anesthesiology of ‘wisdom.'"
"INSPIRED ARENA: Edge has been bringing together the world's foremost scientific thinkers since 1998, and the response to September 11 was measured and uplifting."

"What Questions Have Disappeared?"
"Responses to this year's question are deliciously creative... the variety astonishes. Edge continues to launch intellectual skyrockets of stunning brilliance. Nobody in the world is doing what Edge is doing."
"Once a year, John Brockman of New York, a writer and literary agent who represents many scientists, poses a question in his online journal, The Edge, and invites the thousand or so people on his mailing list to answer it."

"What Is Today's Most Important Unreported Story?"
"Don't assume for a second that Ted Koppel, Charlie Rose and the editorial high command at the New York Times have a handle on all the pressing issues of the day.... a lengthy list of profound, esoteric and outright entertaining responses.

"What Is The Most Important Invention In The Past Two Thousand Years?"
"A terrific, thought provoking site."
"The Power of Big Ideas"
"The Nominees for Best Invention Of the Last Two Millennia Are . . ."
"...Thoughtful and often surprising answers ....a fascinating survey of intellectual and creative wonders of the world ..... Reading them reminds me of how wondrous our world is." — Bill Gates, New York Times Syndicated Column

"What Questions Are You Asking Yourself?"
"A site that has raised electronic discourse on the Web to a whole new level.... Genuine learning seems to be going on here."
"To mark the first anniversary of [Edge], Brockman posed a question: 'Simply reading the six million volumes in the Widener Library does not necessarily lead to a complex and subtle mind," he wrote, referring to the Harvard library. "How to avoid the anesthesiology of wisdom?' "
"Home to often lively, sometimes obscure and almost always ambitious discussions."


Izumi Aizu

Alan Alda

Ivan Amato

Alun Anderson

Chris Anderson

Philip W. Anderson

Charles Arthur

W. Brian Arthur

Scott Atran

Robert Aunger

Albert-László Barabási

Simon Baron-Cohen

Samuel Barondes

Julian Barbour

John Barrow

David Berreby

Gregory Benford

Jamshed Bharucha

Susan Blackmore

Colin Blakemore

Adam Bly

Stewart Brand

Rodney Brooks

David Bunnell

David Buss

William Calvin

Philip Campbell

Leo Chalupa

Andy Clark

Helena Cronin

Garniss Curtis

Antonio Damasio

Paul Davies

Richard Dawkins

Stanislas Dehaene

Daniel C. Dennett

David Deutsch

Art De Vany

Keith Devlin

Niels Diffrient

K. Eric Drexler

Esther Dyson

Freeman Dyson

George Dyson

Brian Eno

Jeffrey Epstein

Nancy Etcoff

Dylan Evans

Paul Ewald

David Finkelstein

Christine Finn

Howard Gardner

David Gelernter

Neil Gershenfeld

Gerd Gigerenzer

Daniel Gilbert

Mike Godwin

Beatrice Golomb

Brian Goodwin

Alison Gopnik

Steve Grand

Stuart Hameroff

Haim Harari

Judith Rich Harris

Marc D. Hauser

Marti Hearst

W. Daniel Hillis

Gerald Holton

Donald Hoffman

John Horgan

Verena Huber-Dyson

Nicholas Humphrey

Mark Hurst

Piet Hut

Arthur R. Jensen

Raphael Kasper

Stuart Kauffman

Kevin Kelly

Art Kleiner

Steven Kosslyn

Kai Krause

Andrian Kreye

Ray Kurzweil

George Lakoff

Jaron Lanier

Edward O. Laumann

Steven Levy

Sara Lippincott

Steve Lohr

Seth Lloyd

David Lykken

John McWhorter

John Maddox

Gary Marcus

John Markoff

Pamela McCorduck

Geoffrey Miller

Marvin Minsky

Mark Mirsky

Howard Morgan

Michael Nesmith

David G. Myers

Randoph Nesse

Richard Nisbett

Tor Nørretranders

James J. O'Donnell

Jay Ogilvy

Dennis Overbye

John Allan Paulos

Irene Pepperberg

Clifford Pickover

Stuart Pimm

Steven Pinker

Jordan Pollack

Ernst Pöppel

William Poundstone

Robert Provine

Eduard Punset

Steve Quartz

Richard Rabkin

Lisa Randall

Eric S. Raymond

Martin Rees

John Rennie

Howard Rheingold

Matt Ridley

Rudy Rucker

Paul Ryan

Scott Sampson

Robert Sapolsky

Roger Schank

Gino Segre

Charles Seife

Terrence Sejnowski

Al Seckel

Rupert Sheldrake

Michael Shermer

Todd Siler

Charles Simonyi

John Skoyles

Lee Smolin

Allan Snyder

Dan Sperber

Maria Spiropulu

Paul Steinhardt

Bruce Sterling

Steven Strogatz

Leonard Susskind

Nassim Taleb

Frank Tipler

Joseph Traub

Arnold Trehub

Carlo Rovelli

Douglas Rushkoff

Karl Sabbagh

Timothy Taylor

Sherry Turkle

Yossi Vardi

J. Craig Venter

Henry Warwick

Delta Willis

Dave Winer

Eberhard Zangger

Anton Zeilinger

Ray Kurzweil

Kurzweil's Law (aka "The Law of Accelerating Returns")

Evolution applies positive feedback in that the more capable methods resulting from one stage of evolutionary progress are used to create the next stage. Each epoch of evolution has progressed more rapidly by building on the products of the previous stage.

Evolution works through indirection: evolution created humans, humans created technology, humans are now working with increasingly advanced technology to create new generations of technology. As a result, the rate of progress of an evolutionary process increases exponentially over time.

Over time, the "order" of the information embedded in the evolutionary process (i.e., the measure of how well the information fits a purpose, which in evolution is survival) increases.

A comment on the nature of order.

The concept of the "order" of information is important here, as it is not the same as the opposite of disorder. If disorder represents a random sequence of events, then the opposite of disorder should imply "not random." Information is a sequence of data that is meaningful in a process, such as the DNA code of an organism, or the bits in a computer program. Noise, on the other hand, is a random sequence. Neither noise nor information is predictable. Noise is inherently unpredictable, but carries no information. Information, however, is also unpredictable. If we can predict future data from past data, then that future data stops being information. We might consider an alternating pattern ("0101010. . . .") to be orderly, but it carries no information (beyond the first couple of bits).

Thus orderliness does not constitute order because order requires information. However, order goes beyond mere information. A recording of radiation levels from space represents information, but if we double the size of this data file, we have increased the amount of data, but we have not achieved a deeper level of order.

Order is information that fits a purpose. The measure of order is the measure of how well the information fits the purpose. In the evolution of life-forms, the purpose is to survive. In an evolutionary algorithm (a computer program that simulates evolution to solve a problem) applied to, say, investing in the stock market, the purpose is to make money. Simply having more information does not necessarily result in a better fit. A superior solution for a purpose may very well involve less data.

The concept of "complexity" is often used to describe the nature of the information created by an evolutionary process. Complexity is a close fit to the concept of order that I am describing, but is also not sufficient. Sometimes, a deeper order—a better fit to a purpose—is achieved through simplification rather than further increases in complexity. For example, a new theory that ties together apparently disparate ideas into one broader more coherent theory reduces complexity but nonetheless may increase the "order for a purpose" that I am describing. Indeed, achieving simpler theories is a driving force in science. Evolution has shown, however, that the general trend towards greater order does generally result in greater complexity.

Thus improving a solution to a problem—which may increase or decrease complexity—increases order. Now that just leaves the issue of defining the problem. Indeed, the key to an evolution algorithm (and to biological and technological evolution) is exactly this: defining the problem.

We may note that this aspect of "Kurzweil’s Law" (the law of accelerating returns) appears to contradict the Second Law of Thermodynamics, which implies that entropy (randomness in a closed system) cannot decrease, and, therefore, generally increases. However, the law of accelerating returns pertains to evolution, and evolution is not a closed system. It takes place amidst great chaos, and indeed depends on the disorder in its midst, from which it draws its options for diversity. And from these options, an evolutionary process continually prunes its choices to create ever greater order. Even a crisis, such as the periodic large asteroids that have crashed into the Earth, although increasing chaos temporarily, end up increasing—deepening—the order created by an evolutionary process.

• A primary reason that evolution—of life-forms or of technology—speeds up is that it builds on its own increasing order, with ever more sophisticated means of recording and manipulating information. Innovations created by evolution encourage and enable faster evolution. In the case of the evolution of life forms, the most notable early example is DNA, which provides a recorded and protected transcription of life’s design from which to launch further experiments. In the case of the evolution of technology, ever improving human methods of recording information have fostered further technology. The first computers were designed on paper and assembled by hand. Today, they are designed on computer workstations with the computers themselves working out many details of the next generation’s design, and are then produced in fully-automated factories with human guidance but limited direct intervention.

• The evolutionary process of technology seeks to improve capabilities in an exponential fashion. Innovators seek to improve things by multiples. Innovation is multiplicative, not additive. Technology, like any evolutionary process, builds on itself. This aspect will continue to accelerate when the technology itself takes full control of its own progression.

• We can thus conclude the following with regard to the evolution of life-forms, and of technology: the law of accelerating returns as applied to an evolutionary process: An evolutionary process is not a closed system; therefore, evolution draws upon the chaos in the larger system in which it takes place for its options for diversity; and evolution builds on its own increasing order. Therefore, in an evolutionary process, order increases exponentially.

• A correlate of the above observation is that the "returns" of an evolutionary process (e.g., the speed, cost-effectiveness, or overall "power" of a process) increase exponentially over time. We see this in Moore’s law, in which each new generation of computer chip (now spaced about two years apart) provides twice as many components, each of which operates substantially faster (because of the smaller distances required for the electrons to travel, and other innovations). This exponential growth in the power and price-performance of information-based technologies—now roughly doubling every year—is not limited to computers, but is true for a wide range of technologies, measured many different ways.

• In another positive feedback loop, as a particular evolutionary process (e.g., computation) becomes more effective (e.g., cost effective), greater resources are deployed towards the further progress of that process. This results in a second level of exponential growth (i.e., the rate of exponential growth itself grows exponentially). For example, it took three years to double the price-performance of computation at the beginning of the twentieth century, two years around 1950, and is now doubling about once a year. Not only is each chip doubling in power each year for the same unit cost, but the number of chips being manufactured is growing exponentially.

• Biological evolution is one such evolutionary process. Indeed it is the quintessential evolutionary process. It took place in a completely open system (as opposed to the artificial constraints in an evolutionary algorithm). Thus many levels of the system evolved at the same time.

• Technological evolution is another such evolutionary process. Indeed, the emergence of the first technology-creating species resulted in the new evolutionary process of technology. Therefore, technological evolution is an outgrowth of—and a continuation of—biological evolution. Early stages of humanoid created technology were barely faster than the biological evolution that created our species. Homo sapiens evolved in a few hundred thousand years. Early stages of technology—the wheel, fire, stone tools—took tens of thousands of years to evolve and be widely deployed. A thousand years ago, a paradigm shift such as the printing press, took on the order of a century to be widely deployed. Today, major paradigm shifts, such as cell phones and the world wide web were widely adopted in only a few years time.

• A specific paradigm (a method or approach to solving a problem, e.g., shrinking transistors on an integrated circuit as an approach to making more powerful computers) provides exponential growth until the method exhausts its potential. When this happens, a paradigm shift (a fundamental change in the approach) occurs, which enables exponential growth to continue.

• Each paradigm follows an "S-curve," which consists of slow growth (the early phase of exponential growth), followed by rapid growth (the late, explosive phase of exponential growth), followed by a leveling off as the particular paradigm matures.

• During this third or maturing phase in the life cycle of a paradigm, pressure builds for the next paradigm shift, and research dollars are invested to create the next paradigm. We can see this in the enormous investments being made today in the next computing paradigm—three-dimensional molecular computing—despite the fact that we still have at least a decade left for the paradigm of shrinking transistors on a flat integrated circuit using photolithography (Moore’s Law). Generally, by the time a paradigm approaches its asymptote (limit) in price-performance, the next technical paradigm is already working in niche applications. For example, engineers were shrinking vacuum tubes in the 1950s to provide greater price-performance for computers, and reached a point where it was no longer feasible to shrink tubes and maintain a vacuum. At this point, around 1960, transistors had already achieved a strong niche market in portable radios.

• When a paradigm shift occurs for a particular type of technology, the process begins a new S-curve.

• Thus the acceleration of the overall evolutionary process proceeds as a sequence of S-curves, and the overall exponential growth consists of this cascade of S-curves.

• The resources underlying the exponential growth of an evolutionary process are relatively unbounded.

• One resource is the (ever-growing) order of the evolutionary process itself. Each stage of evolution provides more powerful tools for the next. In biological evolution, the advent of DNA allowed more powerful and faster evolutionary "experiments." Later, setting the "designs" of animal body plans during the Cambrian explosion allowed rapid evolutionary development of other body organs, such as the brain. Or to take a more recent example, the advent of computer-assisted design tools allows rapid development of the next generation of computers.

• The other required resource is the "chaos" of the environment in which the evolutionary process takes place and which provides the options for further diversity. In biological evolution, diversity enters the process in the form of mutations and ever- changing environmental conditions. In technological evolution, human ingenuity combined with ever-changing market conditions keep the process of innovation going.

• If we apply these principles at the highest level of evolution on Earth, the first step, the creation of cells, introduced the paradigm of biology. The subsequent emergence of DNA provided a digital method to record the results of evolutionary experiments. Then, the evolution of a species that combined rational thought with an opposable appendage (the thumb) caused a fundamental paradigm shift from biology to technology. The upcoming primary paradigm shift will be from biological thinking to a hybrid combining biological and nonbiological thinking. This hybrid will include "biologically inspired" processes resulting from the reverse engineering of biological brains.

• If we examine the timing of these steps, we see that the process has continuously accelerated. The evolution of life forms required billions of years for the first steps (e.g., primitive cells); later on progress accelerated. During the Cambrian explosion, major paradigm shifts took only tens of millions of years. Later on, Humanoids developed over a period of millions of years, and Homo sapiens over a period of only hundreds of thousands of years.

• With the advent of a technology-creating species, the exponential pace became too fast for evolution through DNA-guided protein synthesis and moved on to human-created technology. Technology goes beyond mere tool making; it is a process of creating ever more powerful technology using the tools from the previous round of innovation, and is, thereby, an evolutionary process. As I noted, the first technological took tens of thousands of years. For people living in this era, there was little noticeable technological change in even a thousand years. By 1000 AD, progress was much faster and a paradigm shift required only a century or two. In the nineteenth century, we saw more technological change than in the nine centuries preceding it. Then in the first twenty years of the twentieth century, we saw more advancement than in all of the nineteenth century. Now, paradigm shifts occur in only a few years time.

• The paradigm shift rate (i.e., the overall rate of technical progress) is currently doubling (approximately) every decade; that is, paradigm shift times are halving every decade (and the rate of acceleration is itself growing exponentially). So, the technological progress in the twenty-first century will be equivalent to what would require (in the linear view) on the order of 200 centuries. In contrast, the twentieth century saw only about 20 years of progress (again at today’s rate of progress) since we have been speeding up to current rates. So the twenty-first century will see about a thousand times greater technological change than its predecessor.

Jamshed Bharucha

Bharucha's Law

To understand what people are thinking and feeling, look beyond what they say. Language does not capture the full range and grain of thought and experience, and its unique power enables us as easily to mask our thoughts and feelings as it does to express them.

Samuel Barondes

Barondes' First Law

Science abhors contradictions; scientist's minds are replete with them.

Barondes' Second Law

Self-understanding is inherently inaccurate because most of our knowledge comes from specific behavioral experiences that are often inconsistent; and our mechanisms of learning are designed to store memories whether or or not their implications are formally contradictory.

W. Brian Arthur

Arthur's First Law

High-tech markets are dominated 70-80% by a single player—product, company, or country.

The reason: Such markets are subject to increasing returns or self-reinforcing mechanisms. Therefore an initial advantage
often bestowed by chanceleads to increasing advantage and eventually heavy market domination. (Absent government intervention, of course).

Arthur's Second Law

As technology advances it becomes ever more biological.

We are leaving an age of mechanistic, fixed-design technologies, and entering an age of metabolic, self-reorganizing technologies. In this sense, as technology becomes more advanced it becomes more organic—therefore more "biological." Further, as biological mechanisms at the cellular and DNA levels become better understood, they become harnessed and co-opted as technologies. In this century, biology and technology will therefore intertwine.

Arthur's Third Law

The modularization of technologies increases with the extent of the market.

Just as it pays to create a specialized worker if there is sufficient volume of throughput to occupy that specialty, it pays to create a standard prefabricated assembly, or module, if its function recurs in many instances. Modularity therefore is to a technological economy what the division of labor is to a manufacturing oneit increases as the economy expands.

Daniel C. Dennett

Dennett's Law of Needy Readers

is an extension of Schank's Law

On any important topic, we tend to have a dim idea of what we hope to be true, and when an author writes the words we want to read, we tend to fall for it, no matter how shoddy the arguments. Needy readers have an asymptote at illiteracy; if a text doesn't say the one thing they need to read, it might as well be in a foreign language. To be open-minded, you have to recognize, and counteract, your own doxastic hungers.

Matt Ridley

Ridley's First Law

Science is the discovery of ignorance. It is not a catalog of facts.

Ridley's Second Law

Experience affects an organism largely by switching genes on and off. (Nurture works through nature.)

Ridley's Third Law

Neither the number of base pairs nor the number of genes in an organism's genome bears much if any relation to that organism's size or complexity.

Haim Harari

Harari’s Law of Science Education

The faster Science and Technology advance—the more important it is to teach and to learn the basics of Math and Science and the less important it is to teach and to learn the latest developments.

Harari’s Law of Particle Physics

The electron, its replicas (muon and tau), the quarks and the neutrinos are all composed of the same set of more fundamental objects, which will become the newly accepted basic building blocks of all of nature.

Harari’s Law of Scientific Fads and Bandwagons

Every scientific discovery is first made by one person or by a few people. At the time of the discovery, they are the only ones aware of it. It follows logically that democratic votes, public opinion polls, majority views of scientists and scientific fads do not necessarily represent scientific truth. Only correct experimental results do.

George Lakoff

Lakoff's First Law

Frames trump facts.

All of our concepts are organized into conceptual structures called "frames" (which may include images and metaphors) and all words are defined relative to those frames. Conventional frames are pretty much fixed in the neural structures of our brains. In order for a fact to be comprehended, it must fit the relevant frames. If the facts contradict the frames, the frames, being fixed in the brain, will be kept and the facts ignored.

We see this in politics every day. Consider the expression "tax relief" which the White House introduced into common use on the day of George W. Bush's inauguration. A "relief" frame has an affliction, an afflicted party, a reliever who removes the affliction and is thereby a hero, and in the frame anyone who tries to stop the reliever from administering the relief is a bad guy, a villain. "Tax relief" imposes the additional metaphor that Taxation Is an Affliction, with the entailments that the president is a hero for attempting to remove this affliction and the Democrats are bad guys for opposing him. This frame trumps many facts: Most people wind up paying more in local taxes, payments for services cut, and debt servicing as a result of the Bush's tax cuts.

There is of course another way to think about taxes: Taxes are what you pay to live in America—to have democracy, opportunity, government services, and the vast infrastructure build by previous taxpayers—the highways, the internet, the schools, scientific research, the court system, etc. Taxes are membership fees used to maintain and expand services and the infrastructure. But however true this may be, it is not yet an established frame inscribed in the synapses of our brains.

This has an important consequence. Political liberals have inherited an assumption from the Enlightenment, that The facts will set us free, that if the public is just given the facts, they will, being rational beings, reach the right conclusion. It is simply false. It violates Lakoff's Law.

Lakoff's Second Law

Voters vote their identities, not their self-interest.

Because of the way they frame the world, voters vote in a way that best accords with their identities and not in accord with their self-interest. That is why it is of no use for Democrats to keep pointing out that Bush's tax cuts go to the top 1 percent, not to most voters. If they identify with Bush because they share his culture and his world view, they will vote against their self-interest.

We saw this in California in the recall election, when, for example, union members overwhelming favored Gray Davis' policies as being better for them, yet voted for Schwarzenegger.

Edward O. Laumann

Laumann's First Proposition

Moderation in levels of partnered sex activity is the mode for the bulk of humankind and is consistent with high levels of subjective well-being.

Laumann's Second Proposition

Low levels of subjective sexual well-being is associated with poor physical, emotional, and mental health.

These propositions (they are empirical associations and not established as causal) are based on my extensive international work on human sexuality. They are based on surveys I have conducted in the United States and China as well as the Pfizer-funded Global Survey of Sexual Attitudes and Behavior (N = 27,500) which interviewed equal numbers of men and women 40 to 80 years old in 29 countries world wide. The real question is the nature of the causal link between these variables.

Anton Zeilinger

Zeilinger's Fundamental Law

There is no Fundamental Law.

Zeilinger's Law on Reality, Space and Time

Information is the most Fundamental Concept, it's all we have.

Nancy Etcoff

Etcoff's Law

Be wary of scientific dualisms.

Approach them with caution, the way demolition experts regard bombs, likely to explode, in this case into unproductive argument and the obscuring of truth. "Opposing forces" are the scientific version of the original dualism—good vs evil and darkness vs. light. Instead, of acting in opposition, in nature two forces are likely to dependent, interactive and interwoven; sometimes they are merely two names for the same thing.

For example:

Brain vs Mind
Mind vs Body
Emotion vs Reason
Nature vs Nurture
Us vs Them

Seek unity.

Remember always that it is easy to be in possession of some facts, extraordinarily difficult to know the truth.

Lee Smolin

Smolin's First Law

Genuine advances are rarely made by accident; in fact, the outcome of a scientific investigation is usually less dramatic than originally hoped for. Therefore, if you want to do something really significant in science, you must aim high and you must take genuine risks.

Smolin's Second Law

In every period and every community there is something that everybody believes, but cannot justify. If you want to understand anything, you have to start by ignoring what everyone believes, and thinking for yourself.

This was advice given to me by my father when I was a child. Feynman said something very similar: "Science is the organized skepticism in the reliability of expert opinion."

Smolin's Third Law

Time does exist.

Smolin's Zeroth Law

A measure of our ignorance about nature is the extent to which our theories depend on background structures, which are entities necessary to define the quantities in the theory, that do not themselves refer to anything which evolves dynamically in time. Our understanding can always be deepened by bringing such fixed, background structures into the domain of dynamical law. By doing so, we convert absolute properties, defined with respect to background structures, into relational properties, defined in terms of relationships among dynamical degrees of freedom.

Mark Mirsky

Mirsky's Law

Imagination precedes reality.

To imagine the universe is to fear it, even as one feels the power and pleasure of trying to find its furthest boundaries. To meet that fear one has to seek consolation whether in scientific theory or intuitive vision.

As a corollary to that, the return of past time in the present, as death comes steadily closer, if not unique to the human mind, is certainly one of the consolations of consciousness, and of the shadow realm of dream. If there is hope it is in our ability as men and women to imagine ourselves not only in other worlds but as an "other," as an opposite. Robert Musil, Proust, Kafka, Shakespeare, Dante Alighieri together with the anonymous scribes of the religious epics, Gilgamesh, the Old Testament, were uncanny in their ability to imagine in this way.

Imagination precedes what we call reality. I would propose this as a law of daily life and suspect that it plays a large part in our evolution. Trying to preserve and recreate what was best in my past and the past of distant ancestors is part of what keeps me balanced before a future in which I want to hope.

To imagine is not just to exist, but to prolong existence. At the last moment Spinoza could not surrender the idea that somehow memory of what had happened would not be lost in the vastness of the universe. Spinoza needed that consolation. Whether it does or not, we need to believe that memory persists, and that we are capable of influencing just what memory will be valued and given predominance.

David Buss

Buss’s Laws of Human Mating

Buss’s Third Law of Human Mating

For every mating adaptation in one sex, there exists at least one co-evolved adaptation in the other sex designed to manipulate and exploit it.

Buss’s Fourth Law of Human Mating

For every co-evolved exploitative mating adaptation, there exists at least one co-co-evolved defensive adaptation designed to circumvent being manipulated and exploited.

Buss’s Seventh Law of Human Mating

Never reveal your first two laws of mating, lest they be used to manipulate and exploit you.

Page: [previous] -1 - 2 - 3 - 4 - 5 - 6 - 7 - [next]