August 31, 2007

Let's play God!; Life's questions: J. Craig Venter programs the future
Lasst uns Gott spielen!)

By Jordan Mejias

Was Evolution only an interlude?  At the invitation of John Brockman, science luminaries such as J. Craig Venter, Freeman Dyson, Seth Lloyd, Robert Shapiro and others discussed the question: What is Life? 

EASTOVER FARM, August 30th

It sounds like seaman's yarn what the scientist with the look of a sea dog has in store for us. The suntanned adventurer with the close-clipped grey beard vaunts the ocean as a sea of bacteria and viruses, unimaginable in their varieties. And in their lifestyle, as we might call it. But what do organisms live off? Like man, not off air or love alone. There can be no life without nutrients, it is said. Not true, says the sea dog. Sometimes a source of energy is enough, for instance, when energy is abundantly provided by sunlight. Could that teach us anything about our very special form of life?

J. Craig Venter, the ingenious decoder of the genome, who takes time off to sail around the world on expeditions, balances his flip-flops on his naked feet as he tells us about such astounding phenomena of life. Us, that means a few hand-picked journalists and half a dozen stars of science, invited by John Brockman, the Guru of the all encompassing "Third Culture", to his farm in Connecticut.

Relaxed, always open for a witty remark, but nevertheless with the indispensable seriousness, the scientific luminaries go to work under Brockman's direction. He, the master of the easy, direct question that unfailingly draws out the most complicated answers, the hottest speculations and debates, has for today transferred his virtual salon, always accessible on the Internet under the name Edge, to a very real and idyllic summer's day. This time the subject matter is nothing other than life itself.

When Venter speaks of life, it's almost as if he were reading from the script of a highly elaborate Science Fiction film. We are told to imagine organisms that not only can survive dangerous radiations, but that remain hale and hearty as they journey through the Universe. Still, he of all people, the revolutionary geneticist, warns against setting off in an overly gene-centric direction when trying to track down Life. For the way in which a gene makes itself known, will depend to a large degree upon the aid of overlooked transporter genes. In spite of this he considers the genetic code a better instrument to organize living organisms than the conventional system of classification by species.

Many colleagues nod in agreement, when they are not smiling in agreement. But this cannot be all that Venter has up his sleeve. Just a short while ago, he created a stir with the announcement that his Institute had succeeded in transplanting the genome of one bacterium into another. With this, he had newly programmed an organism. Should he be allowed to do this?  A question not only for scientists. Eastover Farm was lacking in ethicists, philosophers and theologians, but Venter had taken precautions. He took a year to learn from the world's large religions whether it was permissible to synthesize life in the lab. Not a single religious representative could find grounds to object. All essentially agreed: It's okay to play God.

Maybe some of the participants would have liked to hear more on the subject, but the day in Nature's lap was for identifying themes, not giving and receiving exhaustive amounts of information. A whiff of the most breathtaking visions, both good and bad, was enough. There were already frightening hues in the ultimate identity theft, to which Venter admitted with his genome exchange. What if a cell were captured by foreign DNA? Wouldn't it be a nightmare in the shape of a genuine Darwinian victory of the strong over the weak? Venter was applying dark colors here, whereas Freeman Dyson had painted us a much more mellow picture of the future.

Dyson, the great, not yet quite eighty-four year old youngster, physicist and futurist, regards evolution as an interlude. According to his calculations, the competition between species has gone on for just three billion years. Before that, according to Dyson, living organisms participated in horizontal gene transfers; if you will, they preferred the peaceful exchange of information among themselves. In the ten thousand years since Homo sapiens conquered the biosphere, Dyson once again sees a return of the old Modus Operandi, although in a modified form.

The scenario goes as follows: Cultural evolution, characterized by the transfer of ideas, has replaced the much slower biological evolution. Today, ideas, not genes, tip the scales. In availing himself of biotechnology, Man has picked up the torn pre-evolutionary thread and revived the genetic back and forth between microbes, plants and animals. Bit by bit the borders between species are disappearing. Soon only one species will remain, namely the genetically modified human, while the rules of Open Source, which guarantee the unhindered exchange of software in computers, will also apply to the exchange of genes. The evolution of life, in nutshell, will return soon to a state of agreeable unity, as it existed in good old pre-Darwinian times, when life had not yet been separated into distinct species.

Though Venter may not trust in this future peace, he nearly matches Dyson in his futuristic enthusiasm. But he is enough of a realist to stress that he has never talked of creating new life from scratch. He is confident that he can develop new species and life forms, but will always have to rely on existing materials that he finds. Even he cannot conjure a cell out of nothing. So far, so good and so humble.

The rest is sheer bravado. He considers manipulation of human genes not only possible, but desirable. There's no question that he will continue to disappoint the inmate who once asked him to fashion an attractive cellmate, just as he refused the wish of an unsavory gentleman who yearned for mentally underdeveloped working-class people. But, Venter asks, who can object to humans having genetically beefed-up Intelligence? Or to new genomes that open the door to new, undreamt-of sources of bio fuel?  Nobody at Eastover Farm seemed afraid of a eugenic revival. What in German circles would have released violent controversies, here drifts by unopposed under mighty maple trees that gently whisper in the breeze.

All the same, Venter does confess that such life transforming technology, more powerful than any, humanity could harness until now, inevitably plunges him in doubt, particularly when looking back on human history. Still, he looks toward the future with hope and confidence. As does George Church, the molecular geneticist from Harvard, who wouldn't be surprised if a future computer would be able outperform the human brain. Could resourcefully mixed DNA be helpful to us?  The organic chemist Robert Shapiro, Emeritus of New York University, objects strongly to viewing DNA as a monopolistic force. Will he assure us, that life consists of more than DNA?  But of what? Is it conceivable that there are certain forms of life we still are unable to recognize?  Who wants to confirm that nothing runs without DNA?  Why should life not also arise from minerals?

These are thoughts to make jaws drop, not only among laymen. Venter also is concerned that Shapiro defines life all too loosely. But both, the geneticist and the chemist focus on the moment at which life is breathed into an inanimate object. This will be, in Venter's opinion, the next milestone in the investigation and conditioning of life. We can no longer beat around the bush: What is Life? Venter declines to answer, he doesn't want to be drawn into philosophical shit, as he says. Is a virus a life form? Must life, in order to be recognized as life, be self-reproducing? A colorful butterfly glides through the debate. Life can appear so weightless. And it is so difficult to describe and define.

Seth Lloyd, the quantum mechanic from MIT points out mischievously that we know far more about the origin of the universe than we do about the origin of life. Using the quantum computer as his departing point, he tries to give us an idea of the huge number of possibilities out of which life could have developed. If Albert Einstein did not wish to envisage a dice-playing god, Lloyd, the entertaining thinker, can't help to see only dice-playing, though presumably without the assistance of god. Everything reveals itself in his life panorama as a result of chance, whether here on Earth or in an incomprehensible distance

Astrophysicist Dimitar Sasselov works also under the auspices of chance. Although his field of research necessarily widens our perspective, he can present us only a few places in the universe that could be suitable for life. Only five Super-Earths, as Sasselov calls those planets that are larger than Earth, are known to us at this point. With improved recognition technologies, perhaps a hundred million could be found in the universe in all. No, that is still, distributed throughout and applied to the entire universe, not a grand number. But the number is large enough to give us hope for real co-inhabitants of our universe. Somewhere, sometime, we could encounter microbial life. 

Most likely this would be life in a form that we cannot even fathom yet. It will all depend on what we, strange life forms that we are, can acknowledge as life. At Eastover Farm our imaginative powers were already being vigorously tested.

Text: F.A.Z., 31.08.2007, No. 202 / page 33

Translated by Karla taylor

[German Original]