Question Center

Edge 295—July 27, 2009
(8,000 words)


By George Dyson

An Edge Original Essay

(1931 - 2009)

By Stewart Kauffman


Jaron Lanier & PZ Myers on Brian Goodwin

Neri Oxman on Who and/or what was fresh and new at SciFoo '09?


Washington Times, The Futurist, Times & Transcript, Newsweek


Follow Edge On


Charles II had the right idea. He trusted (and endowed) the small group of oddballs who were forming the Royal Society, and put a stop on the Exchequer. If he had rescued the bankers, and ignored William Petty’s band of Natural Philosophers, where would we be now?

By George Dyson

An Edge Original Essay


Is the economy really as bad as it seems? Is the bad economy as real as we think? Expanding upon last year's essay Economic Dis-Equilibrium, George Dyson takes another look back at how we got into the state we're in — and how to find our way out.


GEORGE DYSON, a historian among futurists, is the author of Baidarka; Project Orion; and Darwin Among the Machines.

George Dyson's Edge Bio page

George Dyson on Edge: Turing's Cathedral; The Universal Library; Economic Dis-Equilibrium; Darwin Among The Machines; Or, The Origins Of [Artificial] Life



"I refuse to accept however, the stupidity of the Stock Exchange boys, as an explanation of the trend of stocks," wrote John von Neumann to Stanislaw Ulam, on December 9, 1939. "Those boys are stupid alright, but there must be an explanation of what happens, which makes no use of this fact." 1 This question led von Neumann (in collaboration with Oskar Morgenstern) to his monumental Theory of Games and Economic Behavior, demonstrating how a reliable economy can be constructed out of unreliable parts.

After threats of cancellation by Princeton University Press over the "mammoth" manuscript's escalating length, the book was finally published in September of 1944. "We accepted the manuscript without subsidy or any other stipulation in the fall of 1941, at which time the manuscript was believed to be virtually complete," complained Datus C. Smith in 1943. "At that time it had a manufacturing cost of $1,275... however, in the course of finishing [the last] chapter they uncovered a rich vein of new material, and the manuscript was not actually completed for something like eighteen months... and almost quadrupled in cost." 2

Theory of Games and Economic Behavior placed the foundations of economics, evolution, and intelligence on common mathematical ground. "Unifications of fields which were formerly divided and far apart," counseled von Neumann and Morgenstern in their introduction, "are rare and happen only after each field has been thoroughly explored." 3 The von Neumann and Morgenstern approach (extended by von Neumann's Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components) assumes that human unreliability and irrationality will, in the aggregate, be filtered out. In the real world, however, irrational behavior (including the "stupidity of the stock exchange boys") is not completely filtered out. A new generation of behavioral economists — and new modes of economic misbehavior — are reminding us of that.

Von Neumann and Morgenstern developed their New Testament from first principles and largely ignored prior art. Among the Old Testament prophets whose work preceded them were André-Marie Ampère (1775-1836) and Georges-Louis Leclerc comte de Buffon (1707-1788). Buffon was a celebrated naturalist whose evolutionary theories preceded both Charles and Erasmus Darwin, advancing ideas that were risky at the time. "Buffon managed, albeit in a somewhat scattered fashion," wrote Loren Eiseley, "at least to mention every significant ingredient which was to be incorporated into Darwin's great synthesis of 1859." 4 Buffon's son and Ampère's father both died under the guillotine in postrevolutionary France.

Buffon's Essai d'arithmétique morale, published in 1777, launched the fields of behavioral economics and evolutionary game theory by posing a simple question: why will someone purchase a lottery ticket when they are more likely to die in the next 24 hours than win? Buffon also introduced what, thanks to Stanislaw Ulam, we call the Monte Carlo method. First improvised as a way to numerically evaluate a physical system by invoking a statistical model, Monte Carlo approximations — given ever more powerful computers — are steadily becoming more faithful to the underlying nature of reality than the analytical methods they replaced.

André-Marie Ampère (who coined the term Cybernétique in reference to control theory) published his Considérations sur la théorie mathématique du jeu (On the mathematical theory of games) at the age of twenty-seven in 1802. Ampère began his study by crediting Buffon ("an author in whom even errors bear the imprint of genius") as the forefather of mathematical game theory, citing his Essai d'Arithmétique Morale. Ampère favored probability over strategy and saw games of chance as "certain ruin" to those who played indefinitely or indiscriminately against multiple opponents, "who must then be considered as a single opponent whose fortune is infinite." 5 He observed that a zero-sum game (where one player's loss equals the other players' gain) will always favor the wealthier player, who has the advantage of being able to remain longer in the game.

Von Neumann's initial contribution to the theory of games, extending the work of Émile Borel, was published in 1928. Where Ampère saw chance as holding the upper hand, von Neumann showed how losses at the hand of fate could be held to a minimum through his "minimax" theorem on the existence of good strategies, proving for a wide class of games that a determinable strategy exists that minimizes the expected loss to a player when the opponent tries to maximize that loss by playing as well as possible. Much of von Neumann and Morgenstern's 625-page treatise is devoted to showing how seemingly intractable situations can be rendered solvable through the assumption of coalitions among the players, and how non-zero-sum games can be reduced to zero-sum games by including a fictitious, impartial player (sometimes called Nature) in the game.

Game theory was applied to fields ranging from nuclear deterrence to evolutionary biology. "The initial reaction of the economists to this work was one of great reserve, but the military scientists were quick to sense its possibilities in their field," wrote J. D. Williams in The Compleat Strategyst, a RAND Corporation best-seller that made game theory accessible through examples drawn from everyday life. 6 The economists gradually followed. When John Nash was awarded a Nobel Prize for the Nash equilibrium in 1994, he became the seventh Nobel laureate in economics whose work had been derived from von Neumann's results. Von Neumann "darted briefly into our domain," commented mathematical economist Paul Samuelson, looking back after fifty years, "and it has never been the same since." 7

In 1945 the Review of Economic Studies published von Neumann's "Model of General Economic Equilibrium," a nine-page paper read to a Princeton mathematics seminar in 1932 and first published (in German) in 1937. Von Neumann elucidated the behavior of an economy where "goods are produced not only from 'natural factors of production,' but... from each other." In this autocatalytic economy, equilibrium and expansion coexist at the saddle-point between convex sets. "The connection with topology may be very surprising at first," von Neumann noted, "but the author thinks that it is natural in problems of this kind." 8

Some of the assumptions of von Neumann's "expanding economic model" — that "natural factors of production, including labour, can be expanded in unlimited quantities" and that "all income in excess of necessities of life will be reinvested" — appeared unrealistic at the time, less so now that Moore's Law is driving economic growth. Other assumptions, such as an invariant financial clock cycle, are conservative under the conditions now in play. The problem, as recent events have demonstrated, is that the surface of a bubble is also a convex set.

Von Neumann's collaboration with Oskar Morgenstern was followed by a similar collaboration with Stanislaw Ulam, aimed at developing a unified theory of self-reproduction among living and non-living (or yet-to-be-living) things. Von Neumann's death at age 54 (and the choice of a collaborator not as disciplined as Oskar Morgenstern) left a fragmentary, incomplete manuscript that was compiled posthumously and published as Theory of Self-Reproducing Automata, edited by Arthur W. Burks. 9

Theory of Games and Economic Behavior and Theory of Self-Reproducing Automata were launched on a collision course. The five kilobytes of random-access electrostatic memory that spawned von Neumann's original digital universe at a cost of roughly one hundred thousand 1947 dollars, costs one-hundredth of one cent today — and cycles a thousand times as fast. An increasingly permeable barrier separates living from non-living codes. Over billions of years, biological species learned to survive in a noisy, analog environment by passing themselves, once a generation, through a digital, error-correcting phase, the same way repeater stations are used to convey intelligible messages over submarine cables where noise is being introduced. A world that was digital once a generation is now all-digital, all the time.

"An organism (any reason to be afraid of this term yet?) is a universal automaton which produces other automata like it in space which is inert or only 'randomly activated' around it," explained Ulam, reporting on a conversation with von Neumann that took place on a bench in Central Park in early November 1952. The two mathematicians had probably retreated to that park bench to discuss the top secret Ivy Mike hydrogen bomb test conducted on November 1 at Eniwetok Atoll in the South Pacific, yielding 10.4 megatons — almost one thousand Hiroshimas — and a fireball three miles across. The explosion, based on an insight of Ulam's that had been fleshed out with calculations organized by von Neumann, removed the entire island of Elugelab from the map. That part of the conversation went unrecorded, but when the subject turned to creation and evolution in a digital universe, Ulam preserved some sketchy notes.

"This 'universality' is probably necessary to organize or resist organization by other automata?" Ulam asked. He (and von Neumann) realized that any real evolution in a digital universe "would have to involve an enormous amount of probabilistic superstructure to the outlined theory. I think it should probably be omitted unless it involves the crux of the generation and evolution problem — which it might?" The unbounded (and increasingly probabilistic) digital universe that Ulam and von Neumann imagined as a mathematical abstraction now exists, growing by billions of transistors per second and with more secondary storage than anyone can count. We are surrounded by codes (some Turing-universal) that make copies of themselves, and by physical machines that spawn virtual machines that in turn spawn demand for more physical machines. Some digital sequences code for spreadsheets, some code for music, some code for operating systems, some code for sprawling, metazoan search engines, some code for proteins, some code for the gears used in numerically-controlled gear-cutting machines, and, increasingly, some code for DNA belonging to individuals who serve as custodians and creators of more code. "It is easier to write a new code than to understand an old one," von Neumann warned.

Evolution in the Ulam-von Neumann universe now drives evolution (and economics) in our universe, rather than the other way around. The current misbehavior of our economy, however much it reflects misbehavior by human individuals and institutions, is more a reflection of the behavior of self-reproducing machines and self-replicating codes. We measure our economy in money, not in things. In the age of self-reproducing automata, we can suffer a declining economy, and pandemic unemployment, while still producing as much stuff as people are able to consume. We are facing the first economic downturn to include free cell phones, more automobiles than we have room for (in many locations you can now rent a car for less than it costs to park one) and computers that cost less than a month's health insurance yet run at billions of cycles per second for years.

Why the growing imbalance between the cost of people and the cost of machines? What prices are going up the fastest? Health care — the cost of maintaining human beings. What prices are going down the fastest? The cost of information and machines. What, really, is health-care reform? Human beings are being cared for by a dysfunctional, antiquated system, and we hope that this can be reformed by adopting efficiencies from the domain of machines. Where will this lead? Are we using computers to sequence, store, and more faithfully replicate our own genetic code, or are computers optimizing our genetic code (and health) so that we can do a better job of replicating them?

Replication of information is generally a public good (however strongly pockets of resistance may disagree). When financial instruments become self-replicating, trouble often ensues. The derivatives now haunting us were produced, not from natural factors of production or other goods, but from other financial instruments. There are numerous precedents for this.

As early as the twelfth century it was realized that money, like information but unlike material objects, can be made to exist in more than one place at a single time. An early embodiment of this principle, preceding the Bank of England by more than five hundred years, were Exchequer tallies — notched wooden sticks issued as receipts for money deposited with the Exchequer for the use of the king. "As a financial instrument and evidence it was at once adaptable, light in weight and small in size, easy to understand and practically incapable of fraud," wrote Hilary Jenkinson in 1911. "By the middle of the twelfth century, there was a well-organized and well-understood system of tally cutting at the Exchequer... and the conventions remained unaltered and in continuous use from that time down to the nineteenth century." 10

A precise description was given by Alfred Smee, resident surgeon to the Bank of England and the son of the accountant general (as well as the inventor of electroplating, electrical facsimile transmission, an artificial muscle, and other prescient ideas). "Curiously enough, I have ascertained that no gentleman in the Bank of England recollects the mode of reading them," Smee reported in 1850. "The tally-sticks were made of hazel, willow, or alder wood, differing in length according to the sum required to be expressed upon them. They were roughly squared, and one end was pointed; and on two sides of that extremity, the proper notches, showing the sum for which the tally was a receipt, were cut across the wood." 11

On the other two sides of the tally were written, in ink and in duplicate, the name of the party paying the money, the account for which it was paid, and the date of payment. The tally was then split in two, with each half retaining the notched information as well as one copy of the inscription. "One piece was then given to the party who had paid the money, for which it was a sufficient discharge," Smee continues, "and the other was preserved in the Exchequer. Rude and simple as was this very ancient method of keeping accounts, it appears to have been completely effectual in preventing both fraud and forgery for a space of seven hundred years. No two sticks could be found so exactly similar, as to admit of being identically matched with each other, when split in the coarse manner of cutting tallies; and certainly no alteration of the particulars expressed by the notches and inscription could remain undiscovered when the two parts were again brought together. And, as if it had been further to prove the superiority of these instruments over writing, two attempts at forgery were reported to have been made on the Exchequer, soon after the disuse of the ancient wooden tallies in 1834." 12

Exchequer tallies were ordered replaced in 1782 by an "indented cheque receipt," but the Act of Parliament (23 Geo. 3, c. 82) thereby abolishing "several useless, expensive and unnecessary offices" was to take effect only on the death of the incumbent who, being "vigorous," continued to cut tallies until 1826. "After the further statute of 4 and 5 William IV the destruction of the official collection of old tallies was ordered," noted Hilary Jenkinson. "The imprudent zeal with which this order was carried out caused the fire which destroyed the Houses of Parliament in 1834." 13

The notches were of various sizes and shapes corresponding to the tallied amount: a 1.5-inch notch for £1000, a 1-inch notch for £100, a half-inch notch for £20, with smaller notches indicating pounds, shillings, and pence, down to a halfpenny, indicated by a pierced dot. The code was similar to bar-coding, or the notches still used to identify the emulsion speed of photographic film in the dark. And the self-authentication achieved by distributing the information across two halves of a unique piece of wood is analogous to the way large numbers, split into two prime factors, are used to authenticate digital financial instruments today. Money was being duplicated: the King gathered real gold and silver into the treasury through the Exchequer, yet the tally given in return allowed the holder to enter into trade, manufacturing, or other ventures, producing real wealth with nothing more than a wooden stick.

Until the Restoration tallies did not bear interest, but in 1660, on the accession of Charles II, interest-bearing tallies were introduced. They were accompanied by written orders of loan which, being made assignable by endorsement, became the first negotiable interest-bearing securities in the English-speaking world. Under pressure of spiraling government expenditures the order of loan was soon joined by an instrument called an order of the Exchequer, drawn not against actual holdings but against future revenue and sold at a discount to the private goldsmith bankers whose hard currency was needed to prop things up. In January 1672, unable to meet its obligations, Charles II declared a stop on the Exchequer. At the expense of the private bankers, this first experiment with derivative financial instruments came to an end.

Today's Exchequer, distributed across the global banking network, splits digital tallies by the millions in milliseconds: above human scale in magnitude and beyond human scale in time. High-speed trading programs not only have access to unlimited funding; by dividing time into ever-smaller increments they also, effectively, have access to unlimited time, and, in the words of Ampère, "must then be considered as a single opponent whose fortune is infinite." Can this be stopped?

Financial systems exhibit the Gödelian incompleteness characteristic of all sufficiently powerful formal systems: within the given system it is possible to construct statements (or financial instruments) whose value appears to be sound, but cannot be proved within the system itself. No financial system can ever be completely secure and closed. There is no limit to the level of concepts (including fraudulent ones) that an economy is able to comprehend. The system depends on trust.

"A Banke is a certain number of sufficient men of Credit and Estates joyned together in a stock, as it were for keeping several mens Cash in one Treasury, and letting out imaginary money at interest... and making payment thereof by Assignation, passing each mans Accompte from one to another, yet paying little money," wrote Francis Cradocke in 1660, in An Expedient For taking away all Impositions, and raising a Revenue without Taxes, By Erecting Bankes for the Encouragement of Trade. 14 Establishing a bank requires secure information storage to keep accounts, a license from the government (or an entity beyond government), a small amount of capital, and a large amount of trust.

"A Banker," explained Sir William Petty, co-founder of the Royal Society and author of Political Arithmetick, in 1682, "is honest only upon the Penalty of losing a beneficial Trade, founded upon a good Opinion of the World, which is called Credit." Credit, by definition, cannot easily be restored; its nature is to shift somewhere else. We should be less concerned with loss of money and more concerned with loss of trust. If we have to start over with more trust and less money, is this really so bad? "Is not a Country the Poorer for having less Money?" asked William Petty. "Not always," he answered, "For as the most thriving Men keep little or no Money by them, but turn and wind it into various Commodities to their great Profit, so may the whole Nation also." 15

Charles II had the right idea. He trusted (and endowed) the small group of oddballs who were forming the Royal Society, and put a stop on the Exchequer. If he had rescued the bankers, and ignored William Petty's band of Natural Philosophers, where would we be now?


1 John von Neumann to Stanislaw Ulam, December 9, 1939. (Unpublished letter courtesy of Francoise Ulam).

2 Datus C. Smith Jr. [Princeton University Press] to Frank Aydelotte [IAS] August 9,

3 John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior (Princeton: Princeton University Press, 1944) second edition (New York: John Wiley, 1947), p. 2.

4 Loren Eiseley, Darwin's Century (New York: Doubleday, 1958), p. 39.

5 André-Marie Ampère, Considerations sur la theorie mathematique du jeu (Lyon:
Frères Perisse, 1802), p. 3 [Author's translation].

6 J. D. Williams, The Compleat Strategyst (Santa Monica: RAND Corporation, 1954), p. 216.

7 Paul A. Samuelson, A Revisionist View of Von Neumann's Growth Model, in Dore,
M., Chakravarty, S., and Goodwin, Richard, eds., John von Neumann and Modern Economics, pp. 100-122. (p. 121)

8 John von Neumann, "A Model of General Economic Equilibrium," Review of Economic Studies, vol. 13 (1945) p. 1.

9 John von Neumann, Theory of Self-Reproducing Automata, edited by Arthur W. Burks. Urbana: University of Illinois Press, 1966.

10 Hilary C. Jenkinson, "Exchequer Tallies," Archaeologia, second series, vol. 12 (1911) p. 368.

11 Alfred Smee, Instinct and Reason Deduced from electro-biology (London: Reeve,
Benham and Reeve, 1850), pp. xxix-xxxii.

12 Alfred Smee, Instinct and Reason Deduced from electro-biology (London: Reeve,
Benham and Reeve, 1850), pp. xxix-xxxii.

13 Hilary C. Jenkinson, "Exchequer Tallies," p. 369.

14 Francis Cradocke, 1660, An Expedient For taking away all Impositions, and raising a Revenue without Taxes, By Erecting Bankes for the Encouragement of Trade, London, 1660, p. 1.

15 Sir William Petty, 1682, Quantulumcunque Concerning Money (London: A. and J.
Churchill, 1695), p. 165.

Brian Goodwin
(1931 - 2009)

The late BRIAN GOODWIN was a professor of biology at the Schumacher College, Milton Keynes, and the author of Temporal Organization in Cells and Analytical Physiology, How The Leopard Changed Its Spots: The Evolution of Complexity; (with Gerry Webster) Form and Transformation: Generative and Relational Principles in Biology; and (with Richard Sole) Signs of Life: How Complexity Pervades Biology. He was a member of the Board of Directors of the Sante Fe Institute. Brian Goodwin's Edge Bio Page

A Talk With Brian Goodwin

The 'new' biology is biology in the form of an exact science of complex systems concerned with dynamics and emergent order. Then everything in biology changes. Instead of the metaphors of conflict, competition, selfish genes, climbing peaks in fitness landscapes, what you get is evolution as a dance. It has no goal. As Stephen Jay Gould says, it has no purpose, no progress, no sense of direction. It's a dance through morphospace, the space of the forms of organisms.


Brian should be described as a theoretical biologist. He was introduced into biology from early days, but more recently he has had a structuralist perspective, reaching for fundamental patterns on some expression of life. In that sense, he has come in with a new message, into a biology that's more or less fixated on components and molecules.
— Francisco Varela


Will biology join up with physics, take on its flavor, have this notion of rules, organization, regularity, order? The new movement is transforming biology from a historical science, which is what it is at the moment, the objective of Darwinism being to reconstruct the history of life on Earth. Well, that's not the style of physics. Physics is about laws, the principles of organization of matter. We're doing the same thing in biology; we're looking for the principles of organization, the dynamics of the living process. Once that's understood, you're in a position to say, "Ah! History followed such and such a course in expressing and revealing the subtle order in this particular type of organization of matter we call the living state." Thus, the first thing is to understand the living state.

Comments on Brian Goodwin
Murray Gell-Mann, Stephen Jay Gould, Steve Jones, Richard Dawkins, Nicholas Humphrey, Daniel C. Dennett, Lynn Margulis, Francisco Varela

[Excerpted from The Third Culture: Beyond the Scientific Revolution by John Brockman, S&S, 1995]


Give me a mathematics that has, as a theorem, that humming birds feed on nectar from flowers and pollinate the flower field, mutualist conditions of their very joint existence in the universe.

By Stewart Kauffman

I had a scientific kinship with Brian Goodwin for 43 years, from the day I met him in Warren McCulloch's office at MIT in 1967. Brian was first and furthest in so many ways in theory in biology during the long, still continuing years of an intelligent yet almost archaic reductionism in cell, molecular, and developmental biology. Brian never lost his flame.

All young scientist experience the terror that another has done what one has just done. In my case, in 1964, I discovered Brian's Ph.D. thesis, Temporal Organization in Cells, done under the supervision of another master, C. H. Waddington in Edinburgh after a Rhodes at Oxford. Brian was the first, I say to a world that may not know, to even attempt to formulate a theory of the integrated dynamics of a genome with thousands of coupled genes. He assumed each gene repressed itself by its protein product and created a conservative oscillator. Couplings among genes led to a coupled oscillatory system. It was brave. It was wrong, for conservative systems are structurally unstable. Yet he was first. Brian, unrecognized, is the father of contemporary systems biology.

But in biology Brian's deep love was "structuralism", the deep belief that selection was only part of the story of evolution. His view is gaining sway. In the lineage of D'Arcy Thompson, Brian forged elegant models of morphogenesis and development, most notably in Acetabularia. His film is still available to our latter day eyes. Brian assumed calcium fluxes in the cytoskeleton that tied to membrane curvature and reproduced the stunning sequence of bifurcations one sees in this one millimeter single celled organism. We all know the Turing model of reaction diffusion equations, deservedly famous. But Brian was there too, with a different model, different mechanism and dead right on target. With Ricard Sole', Brian was there with an account of phase transitions in ant colonies that organized their collective social behavior.

Brian and I had the adventure of attempting to account for Drosophila mutants such as bicaudal and Krupple. In bicaudal, weak alleles delete the head. Stronger alleles delete head and thorax. Still stronger alleles yield the classical bicaudal phenotype, Abdominal segments 8,7,6,5,5,7,8 with longitudinal mirror symmetry. Occasional first instar larvae were headless on the left side and bicaudal on the right side, thus thorax was juxtaposed to Abdominal segment 8.

We stole Arthur Winfree's ideas from limit cycles and singularities, and Art's type 1 and type 0 resetting curves, to explain these bizarre phenomena, still, to my knowledge, left hanging unexplained. Brian was always a decade ahead, at least of me. It was he who began a quest for a still missing science of qualities. Give me a mathematics that has, as a theorem, that humming birds feed on nectar from flowers and pollinate the flower field, mutualist conditions of their very joint existence in the universe.

Brian was a decade ahead in decrying the ravages too often done by the IMF and World Bank, caught later in J. Steigletz' Globalization and its Discontents. Brian was a decade ahead of most of us recognizing the concerns about genetically modified foods, and that globalization had its dangers and local and regional economics had virtues and perhaps stabilities worth exploring. And Brian is still a decade ahead seeking a mixture of holism and reductionism, even to his death.

Stuart Kauffman

STUART A. KAUFFMAN, is a professor at the University of Calgary with a shared appointment between biological sciences and physics and astronomy. His most recent book is Reinventing the Sacred: A New View of Science, Reason, and Religion.

Stewart Kauffman's Edge Bio Page


Brian Goodwin pioneered an idea that is starting to sound less radical all the time: The problems biological evolution must solve are so hard that there are sometimes only a significantly limited variety of solutions. This position was characterized as "romantic" by some critics, like Daniel Dennett, but it also rebukes the romantic notion of infinite possibilities. Goodwin actually exposed conflicts between two kinds of romanticism. If all possibilities are possible, then the particular way we are is random, and might seem meaningless. If not all possibilities are possible, then there is at the very least meaning to the way we are (for it isn't arbitrary), but we must accept that we live within constraints. I am deeply grateful to Goodwin for his fusion of common sense and radical exploration. His sensibility benefitted all fields, not just biology.


It's sad to see that we've lost Brian Goodwin, one of the genuinely original (but not always right!) thinkers of our time. There aren't many left of the old structuralist tradition in biology, the kind of non-genetic purists who tried to analyze development in terms of the fundamental physical and chemical properties of the organism—they've been swallowed up and lost in a triumphal molecular biology research program.

The Edge interview with and essay by Goodwin — are good places to start. If that whets your appetite, you should also read his book, How the Leopard Changed Its Spots : The Evolution of Complexity, which is aimed at general audiences and is a good overview of why we should look at more than just genes to explain form.

He was an advocate for one view of nature, and I think he missed the mark by neglecting genes as much as he did; we know now that a lot of details of morphology are directly affected in subtle and not-so-subtle ways by the genetics of the organism. But I think we can also make a case that the modern molecular biological approach is also missing a significant element. Every biologist ought to read a little Goodwin, just to leaven their picture of how biology works with his special perspective.

Who and/or what was fresh and new at SciFoo '09?


• On curved truth: In the "Social Nature of Knowledge" Harry Collins along with inspiring commentary by Lee Smolin and Janna Levin raised the core dichotomy between social systems that construct belief through religion, and social systems that construct truth through science. Such categorization made me realize that religion may have well been programmed to predict (but not explain) reality by ways of aphorismic codes of practice. It also made me wonder whether truth has scale, not unlike nature’s scaling systems. All in all, this session demonstrated the significance of taking nature’s authority, not human power, as the final arbitrator in matters of science. We need at least two agents to form a religion and only one disproof of common-knowledge to make science.

Esther Dyson's "fi-sci" account of fearless space travel exploration illuminated the potential of space tourism to seek knowledge and promote discovery through entertainment. And besides, what does this phenomenon portend for the design of the real star-cities of tomorrow?

• Searching finally meets reasoning in the unresolved and, hopefully, still ongoing Marvin Minsky-Larry Page tête-à-tête. The new open condition might be how to state-change from reverse engineering the brain to designing a mind. Google-search thus transforms into Googlogic: a Society of Mind much needed.

WHAT'S NEXT: Dispatches on the Future of Science
Edited by Max Brockman

Sunday, July 19, 2009

BOOKS: 'What's Next: Dispatches on the Future of Science'
Julie Robison

People's exposure to the world of science is too often limited to watching the Discovery Channel or "reading" National Geographic. But the essence of science is not only what is happening today, but what could happen tomorrow. "What's Next? Dispatches on the Future of Science" is a book of science essays collected and edited by Max Brockman. It boasts that the authors of the 18 original essays that make up this book come from a "new generation of scientists" and are the future of science.

The essays cover a range of topics. In "Will We Decamp for the Northern Rim?," Lawrence C. Smith writes that the world can't escape global warming, regardless of policy changes. Stephon H.S. Alexander discusses dark matter and vacuum energy in "Just What Is Dark Energy." Vanessa Woods and Brian Hare's "Out of Our Minds: How Did Homo sapiens Come Down From the Trees, and Why Did No One Follow?" notes the theory of evolution and its relation to humans is still a work in progress. ...

...In his preface, Mr. Brockman says of the scientists writing in this collection that "their ideas will eventually help to redefine who and what we are." It is a claim well supported by this engaging book. Perhaps the world started with a bang, but if the scientists who contributed to "What's Next?" have anything to do with it, it will certainly not end with a whimper.


July-August, 2009

...Brockman gives a sneak peek of the next generation of scientific discovery with a compilation of essays by 18 of today's most promising young scientists. Essays weigh in on some of the most perplexing questions in astrophysics, neuroscience, paleoanthropology, and a cross-section other research fields.

The authors detail new revelations about childhood and adolescent brain development; reexaminations of the role of culture in the way individuals think; and critical speculation on the universe's mysterious stores of "dark energy" and "dark matter," among more subjects. Other essays speculate on future trends, such as the ethical frameworks that we might put in place to govern genetic engineering, and the prospect that climate change may spark massive migrations of human communities from warmer regions to the Northern Hemisphere. In all, authors challenge long-standing notions and elucidate intriguing new ones.

July 13, 2009

Time flies faster as we age . . . or so it seems
By Norbert Cunningham

...I take the following from an essay titled "Brain Time" by Dr. David M. Eagleman which appears in a book called "What's Next? Dispatches on the Future of Science," edited by Max Brockman.

Dr. Eagleman is a bright young scientist who has undergraduate degrees from Rice University and Oxford University in literature, but who obtained a doctorate in neuroscience from the Baylor College of Medicine 11 years ago. Today he is director of the Baylor College of Medicine's Laboratory for Perception and Action. The lab's long-term goal is to "understand the neural mechanisms of time perception," which in plain English is to figure out how our brains make us think time has slowed or sped up when it hasn't. It was his and his colleagues' work that allowed me to say that our intuitions are correct: people in traumatic situations do perceive time to slow, but a hair-raising experiment shows they have no extra time to react or do anything extra beyond what would normally be possible.

An explanation

We perceive the slow motion because time and memory are "tightly linked," says Dr. Eagleman. In such critical situations a part of our brain called the amygdala kicks into high gear and takes over most of the brain's resources. This forces a secondary memory system to do the processing, a system that can later produce flashbacks of the sort soldiers with post-traumatic stress experience. This backup memory is "stickier" than what our brains usually use to store memories, producing more vivid and clear images in our minds; more detail. And in remembering these, since there are many more images, just like inserting extra images in a movie reel, it makes the event appear to last longer and slows motion down. That much is fairly certain. ...


July 9, 2009

What's in a Word?
Language may shape our thoughts.

By Sharon Begley

A psychologist at Stanford University, she has long been intrigued by an age-old question whose modern form dates to 1956, when linguist Benjamin Lee Whorf asked whether the language we speak shapes the way we think and see the world. If so, then language is not merely a means of expressing thought, but a constraint on it, too. Although philosophers, anthropologists, and others have weighed in, with most concluding that language does not shape thought in any significant way, the field has been notable for a distressing lack of empiricism—as in testable hypotheses and actual data.

That's where Boroditsky comes in. In a series of clever experiments guided by pointed questions, she is amassing evidence that, yes, language shapes thought. The effect is powerful enough, she says, that "the private mental lives of speakers of different languages may differ dramatically," not only when they are thinking in order to speak, "but in all manner of cognitive tasks," including basic sensory perception. "Even a small fluke of grammar"—the gender of nouns—"can have an effect on how people think about things in the world," she says. ...

...Language even shapes what we see. People have a better memory for colors if different shades have distinct names—not English's light blue and dark blue, for instance, but Russian's goluboy and sinly. Skeptics of the language-shapes-thought claim have argued that that's a trivial finding, showing only that people remember what they saw in both a visual form and a verbal one, but not proving that they actually see the hues differently. In an ingenious experiment, however, Boroditsky and colleagues showed volunteers three color swatches and asked them which of the bottom two was the same as the top one. Native Russian speakers were faster than English speakers when the colors had distinct names, suggesting that having a name for something allows you to perceive it more sharply. Similarly, Korean uses one word for "in" when one object is in another snugly (a letter in an envelope), and a different one when an object is in something loosely (an apple in a bowl). Sure enough, Korean adults are better than English speakers at distinguishing tight fit from loose fit.

In Australia, the Aboriginal Kuuk Thaayorre use compass directions for every spatial cue rather than right or left, leading to locutions such as "there is an ant on your southeast leg." The Kuuk Thaayorre are also much more skillful than English speakers at dead reckoning, even in unfamiliar surroundings or strange buildings. Their language "equips them to perform navigational feats once thought beyond human capabilities," Boroditsky wrote on Edge.org. ...


[PERMALINK: What's Next On Edge]

Beyond Edge

A. C. Grayling on Alison Gopnik's The Philosophical Baby in Barnes & Noble Review [...]

Sam Harris's NYTimes OpEd on the Francis Collins nomination: "Science Is in the Details" [...]

"The silliest smear." [...]

Malcolm Gladwell in The New Yorker: "In conflicts involving mutual assessment, an exaggerated assessment of the probability of winning increases the probability of winning," Richard Wrangham, a biological anthropologist at Harvard, writes. "Selection therefore favors this form of overconfidence."

IEEE Spectrum Special Issue on "The Singularity" John Horgan [...] Rodney Brooks, Jaron Lanier, Steven Pinker, David Dalrymple, Esther Dyson, Daniel Dennett, Ray Kurzweil, Neal Gershenfeld, and more [...]

Jerry Coyne on Colin Tudge's The Link in Barnes & Noble Review [...]

"The Dawkins Dogma" by Fern Elsdon-Baker in New Scientist [...]

"Richard Dawkins under fire: Ready, aim, miss" in The Economist [...]

Chris Anderson explains to Colbert how it's possible for companies to make money by providing free services. [...]

The engrossing essay collection which offers a youthful spin on some of the most pressing scientific issues of today—and tomorrow...Kinda scary? Yes! Super smart and interesting? Definitely. The Observer's Very Short List

"A captivating collection of essays ... a medley of big ideas." — Amanda Gefter, New Scientist

"The perfect collection for people who like to stay up on recent scientific research but haven't the time or expertise to go to the original sources." — Playback.stl.com

Dispatches on the Future of Science
Edited By Max Brockman

If these authors are the future of science, then the science of the future will be one exciting ride! Find out what the best minds of the new generation are thinking before the Nobel Committee does. A fascinating chronicle of the big, new ideas that are keeping young scientists up at night. Daniel Gilbert, author of Stumbling on Happiness

"A preview of the ideas you're going to be reading about in ten years." — Steven Pinker, author of The Stuff of Thought

"Brockman has a nose for talent." — Nassim Nicholas Taleb, author The Black Swan

"Capaciously accessible, these writings project a curiosity to which followers of science news will gravitate." — Booklist

"For those seeking substance over sheen, the occasional videos released at Edge.org hit the mark. The Edge Foundation community is a circle, mainly scientists but also other academics, entrepreneurs, and cultural figures. ... Edge's long-form interview videos are a deep-dive into the daily lives and passions of its subjects, and their passions are presented without primers or apologies. The decidedly noncommercial nature of Edge's offerings, and the egghead imprimatur of the Edge community, lend its videos a refreshing air, making one wonder if broadcast television will ever offer half the off-kilter sparkle of their salon chatter." — Boston Globe

Mahzarin Banaji, Samuel Barondes, Yochai Benkler, Paul Bloom, Rodney Brooks, Hubert Burda, George Church, Nicholas Christakis, Brian Cox, Iain Couzin, Helena Cronin, Paul Davies, Daniel C. Dennett, David Deutsch,Dennis Dutton, Jared Diamond, Freeman Dyson, Drew Endy, Peter Galison, Murray Gell-Mann, David Gelernter, Neil Gershenfeld, Anthony Giddens, Gerd Gigerenzer, Daniel Gilbert, Rebecca Goldstein, John Gottman, Brian Greene, Anthony Greenwald, Alan Guth, David Haig, Marc D. Hauser, Walter Isaacson, Steve Jones, Daniel Kahneman, Stuart Kauffman, Ken Kesey, Stephen Kosslyn, Lawrence Krauss, Ray Kurzweil, Jaron Lanier, Armand Leroi, Seth Lloyd, Gary Marcus, John Markoff, Ernst Mayr, Marvin Minsky, Sendhil Mullainathan, Dennis Overbye, Dean Ornish, Elaine Pagels, Steven Pinker, Jordan Pollack, Lisa Randall, Martin Rees, Matt Ridley, Lee Smolin, Elisabeth Spelke, Scott Sampson, Robert Sapolsky, Dimitar Sasselov, Stephen Schneider, Martin Seligman, Robert Shapiro, Clay Shirky, Lee Smolin, Dan Sperber, Paul Steinhardt, Steven Strogatz, Seirian Sumner, Leonard Susskind, Nassim Nicholas Taleb, Timothy Taylor, Richard Thaler, Robert Trivers, Neil Turok, J.Craig Venter, Edward O. Wilson, Lewis Wolpert, Richard Wrangham, Philip Zimbardo

[Continue to Edge Video]

Edited by John Brockman
With An Introduction By BRIAN ENO

The world's finest minds have responded with some of the most insightful, humbling, fascinating confessions and anecdotes, an intellectual treasure trove. ... Best three or four hours of intense, enlightening reading you can do for the new year. Read it now."
San Francisco Chronicle

"A great event in the Anglo-Saxon culture."
El Mundo

Praise for the online publication of
What Have You Change Your Mind About?

"The splendidly enlightened Edge website (www.edge.org) has rounded off each year of inter-disciplinary debate by asking its heavy-hitting contributors to answer one question. I strongly recommend a visit." The Independent

"A great event in the Anglo-Saxon culture." El Mundo

"As fascinating and weighty as one would imagine." The Independent

"They are the intellectual elite, the brains the rest of us rely on to make sense of the universe and answer the big questions. But in a refreshing show of new year humility, the world's best thinkers have admitted that from time to time even they are forced to change their minds." The Guardian

"Even the world's best brains have to admit to being wrong sometimes: here, leading scientists respond to a new year challenge." The Times

"Provocative ideas put forward today by leading figures."The Telegraph

The world's finest minds have responded with some of the most insightful, humbling, fascinating confessions and anecdotes, an intellectual treasure trove. ... Best three or four hours of intense, enlightening reading you can do for the new year. Read it now." San Francisco Chronicle

"As in the past, these world-class thinkers have responded to impossibly open-ended questions with erudition, imagination and clarity." The News & Observer

"A jolt of fresh thinking...The answers address a fabulous array of issues. This is the intellectual equivalent of a New Year's dip in the lake—bracing, possibly shriek-inducing, and bound to wake you up." The Globe and Mail

"Answers ring like scientific odes to uncertainty, humility and doubt; passionate pleas for critical thought in a world threatened by blind convictions." The Toronto Star

"For an exceptionally high quotient of interesting ideas to words, this is hard to beat. ...What a feast of egg-head opinionating!" National Review Online

Today's Leading Thinkers on Why Things Are Good and Getting Better
Edited by John Brockman
Introduction by DANIEL C. DENNETT


"The optimistic visions seem not just wonderful but plausible." Wall Street Journal

"Persuasively upbeat." O, The Oprah Magazine

"Our greatest minds provide nutshell insights on how science will help forge a better world ahead." Seed

"Uplifting...an enthralling book." The Mail on Sunday

Today's Leading Thinkers on the Unthinkable
Edited by John Brockman
Introduction by STEVEN PINKER


"Danger – brilliant minds at work...A brilliant bok: exhilarating, hilarious, and chilling." The Evening Standard (London)

"A selection of the most explosive ideas of our age." Sunday Herald

"Provocative" The Independent

"Challenging notions put forward by some of the world's sharpest minds" Sunday Times

"A titillating compilation" The Guardian

"Reads like an intriguing dinner party conversation among great minds in science" Discover

Today's Leading Thinkers on Science in the Age of Certainty
Edited by John Brockman
Introduction by IAN MCEWAN


"Whether or not we believe proof or prove belief, understanding belief itself becomes essential in a time when so many people in the world are ardent believers." LA Times

"Belief appears to motivate even the most rigorously scientific minds. It stimulates and challenges, it tricks us into holding things to be true against our better judgment, and, like scepticism -its opposite -it serves a function in science that is playful as well as thought-provoking. not we believe proof or prove belief, understanding belief itself becomes essential in a time when so many people in the world are ardent believers." The Times

"John Brockman is the PT Barnum of popular science. He has always been a great huckster of ideas." The Observer

"An unprecedented roster of brilliant minds, the sum of which is nothing short of an oracle—a book ro be dog-eared and debated." Seed

"Scientific pipedreams at their very best." The Guardian

"Makes for some astounding reading." Boston Globe

"Fantastically stimulating...It's like the crack cocaine of the thinking world.... Once you start, you can't stop thinking about that question." BBC Radio 4

"Intellectual and creative magnificence" The Skeptical Inquirer






"deeply passionate"









Edge Foundation, Inc. is a nonprofit private operating foundation under Section 501(c)(3) of the Internal Revenue Code.