Edge 210 — May 17, 2007
(9,300 words)



THE THIRD CULTURE

The Cyclic Universe
A Talk with Neil Turok

The Encylopedia of Life
E.O. Wilson

E.O. Wilson: TED Prize Wish: Help Build the Encyclopedia of Life
Chris Anderson, TED Curator

Saturn Backlit By the Sun
Steven Pinker

The TIME 100
J. Craig Venter, Lisa Randall,
Richard Dawkins, Chris Anderson

THIRD CULTURE NEWS

THE GUARDIAN
Search for happiness scoops science prize
By Alok Jha

THE BOSTON GLOBE
Unbelievable
By Daniel C. Dennett

NEW YORKER
Morality 2012

NEW YORKER
Atheists with Attitude
By Anthony Gottlieb

PROSPECT
Why Home Doesn't Matter
By Judith Rich Harris

PUBLISHERS WEEKLY
Authors Shine at LA Times Book Prizes
By Bridget Kinsella

THE NATION
Among the Disbelievers
By Daniel Lazare

THE TIMES
How dare you call me a fundamentalist
By Richard Dawkins

THE WALL STREET JOURNAL
Scientists Draw Link Between Morality And Brain's Wiring
By Robert Lee Hotz

THE COLBERT REPORT
Nassim Nicholas Taleb

THE BOSTON GLOBE
Cataloguing every species on earth
By Colin Nickerson

THE GUARDIAN
The New Atheists loathe religion far too much to plausibly challenge it
By Madeleine Bunting

THE PRESS
(Christchurch, New Zealand)
"WHAT IS YOUR DANGEROUS IDEA?" Edited By John Brockman
By Howard Williams

DE GROENE AMSTERDAMMER
Dawkins: God als misvatting (The God Delusion)

TIME
The TIME 100: Paul Allen
By Steven Pinker

TIME
The TIME 100: Svante Pääbo
By J. Craig Venter

THE CHRONICLE REVIEW
Toward a Unified Theory of Einstein's Life
John Horgan

FRESH AIR
'Lucifer Effect' Asks Why Good People Go Bad
Terry Gross

THE WASHINGTON POST
When Seeing Is Disbelieving
By Shankar Vedantam

AERO-NEWS.NET
Dreamlike... Flying With Professor Stephen Hawking
By ANN Editor-In-Chief and Zero-G Photographer Jim Campbell



THE CYCLIC UNIVERSE [5.16.07]
A Talk With Neil Turok


Neil Turok
High | Low

"In recent years, the search for the fundamental laws of nature has forced us to think about the Big Bang much more deeply. According to our best theories — string theory and M theory — all of the details of the laws of physics are actually determined by the structure of the universe; specifically, by the arrangement of tiny, curled-up extra dimensions of space. This is a very beautiful picture: particle physics itself is now just another aspect of cosmology. But if you want to understand why the extra dimensions are arranged the way they are, you have to understand the Big Bang because that's where everything came from."

...



May 8, 2007

IMAGINE an electronic for each species of organism on earth available everywhere by single access on command. — E.O. Wilson

THE ENCYCLOPEDIA OF LIFE

A Leap for All Life: World’s Leading Scientists Announce Creation of “Encyclopedia of Life”

Biodiversity, Science Communities Unite Behind Epic Effort To Promote Biodiversity, Document All 1.8 Million Named Species on Planet

Comprehensive, collaborative, ever-growing, and personalized, the Encyclopedia of Life is an ecosystem of websites that makes all key information about life on Earth accessible to anyone, anywhere in the world. Our goal is to create a constantly evolving encyclopedia that lives on the Internet, with contributions from scientists and amateurs alike. To transform the science of biology, and inspire a new generation of scientists, by aggregating all known data about every living species. And ultimately, to increase our collective understanding of life on Earth, and safeguard the richest possible spectrum of biodiversity.

...



May 8, 2007

E.O. WILSON: TED PRIZE WISH: HELP BUILD THE ENCYCLOPEDIA OF LIFE
Chris Anderson, TED Curator

Those of us in Monterey this year watched in awe as E O Wilson unveiled his inspiring TED Prize wish to create an Encyclopedia of Life. (If you weren't there, you can see it at the link above). As E.O. Wilson accepts his 2007 TED Prize, he makes a plea on behalf of his constituents, the insects and small creatures, to learn more about our biosphere. We know so little about nature, he says, that we're still discovering tiny organisms indispensable to life; yet we're still steadily destroying nature. Wilson identifies five grave threats to biodiversity (a term he coined), using the acronym HIPPO, and makes his TED wish: that we will work together on the Encyclopedia of Life, a web-based compendium of data from scientists and amateurs on every aspect of the biosphere.

In Washington DC this morning, the first big step in that dream came true. Five major scientific institutions, backed by a $50m funding commitment led by the MacArthur Foundation, announced the launch of a global effort to launch the Encyclopedia. Ed Wilson described today's announcement as a dream come true.

...


SATURN BACKLIT BY THE SUN
Steven Pinker


One of these days, Edge may want to run this photo, which planetary scientist Carolyn Porco, leader of the Imaging Team for the Cassini mission to Saturn, showed us at the TED Conference: Saturn backlit by the sun, with the Earth appearing as a tiny dot in upper left (shown in the inset blowup). It is not only perhaps the most stunning photograph ever taken, but the fact that it has not appeared on the cover of Time, New York Times, etc., is a sign of our culture's indifference to science. This is truly awe-inspiring — not just visually beautiful, but a mind-boggling technical achievement, and a way to depict the finiteness and fragility of the planet in a way that we haven’t experienced since the famous "Earthrise" photo from the Apollo program in the late 1960s. — Steve Pinker



May 3, 2007

The TIME 100

The People Who Shape Our World
Here's our list of the 100 men and women whose power, talent or moral example is transforming the world.

SCIENTISTS & THINKERS

J. Craig Venter
By Jean-Michel Cousteau

When it comes to creatures living in the oceans, I, like most people, have always been enthralled by the popular favorites such as whales, polar bears and sea otters. It takes a special person to appreciate that there is just as much wonder to be found in the ocean's smallest and humblest organic forms—the microbes, genes and proteins without which the more charismatic creatures wouldn't exist at all.

J. Craig Venter
, 60, a former National Institutes of Health physiologist, who led the effort to sequence and publish the human genome in 2001, is one such person. Through the institute that bears his name, he is sponsoring the second of two global expeditions by the research ship Sorcerer II to sample microbes and proteins throughout the world's oceans and seas.

The entire planet is inhabited mostly by microbes and relies on them to recycle waste, to create the raw materials that support healthy ecosystems and to keep the atmosphere in balance. The study of the evolution of these organisms has helped us develop new pharmaceuticals and other products and taught us much about genetically engineering new cures and treatments.

The Sorcerer II's journeys have so far yielded a database of 6.3 million genetic base pairs and 1,700 new families of proteins, not to mention 150 new species of microbes in waters off Bermuda that were once considered a biological desert—and the searching and counting is nowhere near complete. Biodiversity is our planet's greatest treasure. Through Venter's work, we may inch closer to protecting our whole planet, including those residents that are not big and warm and fuzzy. ...


Lisa Randall
By Julie Rawe

Lisa Randall's nonphysicist friends knew she was onto something big when she presented her work at a conference and Stephen Hawking saved her a seat at the banquet afterward. As the first female theoretical physicist to gain tenure at Harvard, Randall, 44, has not only been invited to sit with the boys but has also been leading the conversation because of her ideas about extra dimensions beyond the three that we can see and feel. She's not the first person to theorize that the universe has hidden dimensions, but she revolutionized the field by suggesting that an extra dimension could be infinitely large and that we might be living in a 3-D sinkhole in a higher-dimensional universe. Far from posing idle brain teasers, her research might solve one of physics' great mysteries—namely, why gravity is so weak in contrast to electromagnetism and other forces. (Note how a small magnet can pluck up a paper clip despite the gravitational pull of the entire planet.) After doing some mind-blowing math, she thinks the warped geometry of space-time could mean gravity is weak here and strong elsewhere.

Randall is building on the notion that particles and forces could be confined in a membrane-like object called a brane. To help the public follow, she wrote a surprisingly hip book, Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions, that quotes Björk and Eminem and uses reader-friendly analogies like comparing a particle in our universe to a water droplet on a gravity-intensive shower curtain. But most important, Randall's work suggests ways to test for evidence of higher dimensions. Using Europe's Large Hadron Collider is one, and it should start cranking out useful data within a few years. Another tool that could back up her ideas is a trio of laser-interferometry spacecraft that NASA is helping put together. The project's acronym, LISA, is a nice bit of coincidence. ...


Richard Dawkins
By Michael Behe

Of Richard Dawkins' nine books, none caused as much controversy or sold as well as last year's The God Delusion. The central idea—popular among readers and deeply unsettling among proponents of intelligent design like myself—is that religion is a so-called virus of the mind, a simple artifact of cultural evolution, no more or less meaningful than eye color or height.

It is a measure of the artful way Dawkins, 66, an evolutionary biologist at the University of Oxford, tells a tale and the rigor he brings to his thinking that even those of us who profoundly disagree with what he has to say can tip our hats to the way he has invigorated the larger debate.

Dawkins had a mild Anglican youth but at 16 discovered Charles Darwin and believed he'd found a pearl of great price. I believe his new book follows much less from his data than from his premises, and yet I admire his determination. Concerning the big questions, the Bible advises us to be hot or cold but not lukewarm. Whatever the merit of his ideas, Richard Dawkins is not lukewarm. ...


Chris Anderson
By Malcolm Gladwell

All writers are in search of the Big Idea. A Big Idea has to matter. But you can have only one of them. Your Big Idea can't be that there are, say, 89 Rules of Power. E=mc(2) was, technically speaking, a Big Idea. But not really, because the best Big Ideas are also transparent. Truly Big Ideas are the rarest of phenomena, and when I first came upon Chris Anderson's The Long Tail last year, I knew this was one.

Born in 1961, Anderson became a physicist and conducted research at Los Alamos National Laboratories in New Mexico. As editor in chief of Wired, he described the idea of The Long Tail in a 2004 article; the book came out in 2006.

Here is what the idea says: Many of us see the same movies and read the same books because the bookstore can store only so many books and the movie theater can play only so many movies. There isn't enough space to give us exactly what we want. So we all agree on something we kind of want. But what happens when the digital age comes along, allowing the bookstore to store all the books in the world? Now, it doesn't sell 1,000 copies of one book that we all kind of want; it sells one copy of 1,000 books each of us really wants.

Five sentences to explain something that, if you think about Amazon and Netflix and iTunes, will make you see the world a different way. That's a Truly Big Idea. ...



"In recent years, the search for the fundamental laws of nature has forced us to think about the Big Bang much more deeply. According to our best theories — string theory and M theory — all of the details of the laws of physics are actually determined by the structure of the universe; specifically, by the arrangement of tiny, curled-up extra dimensions of space. This is a very beautiful picture: particle physics itself is now just another aspect of cosmology. But if you want to understand why the extra dimensions are arranged as they are, you have to understand the Big Bang because that's where everything came from."

THE CYCLIC UNIVERSE [5.17.07]
A Talk With Neil Turok


Neil TurokHigh | Low

NEIL TUROK holds the Chair of Mathematical Physics in the department of applied mathematics and theoretical physics at Cambridge University. He is coauthor, with Paul Steinhardt, of Endless Universe: Beyond the Big Bang.

NEIL TUROK's Edge Bio Page


THE CYCLIC UNIVERSE

[NEIL TUROK:] For the last ten years I have mainly been working on the question of how the universe began — or didn't begin. What happened at the Big Bang? To me this seems like one of the most fundamental questions in science, because everything we know of emerged from the Big Bang. Whether it's particles or planets or stars or, ultimately, even life itself.

In recent years, the search for the fundamental laws of nature has forced us to think about the Big Bang much more deeply. According to our best theories — string theory and M theory — all of the details of the laws of physics are actually determined by the structure of the universe; specifically, by the arrangement of tiny, curled-up extra dimensions of space. This is a very beautiful picture: particle physics itself is now just another aspect of cosmology. But if you want to understand why the extra dimensions are arranged as they are, you have to understand the Big Bang because that's where everything came from.

Somehow, until quite recently, fundamental physics had gotten along without really tackling that problem. Even back in the 1920's, Einstein, Friedmann and Lemaitre — the founders of modern cosmology — realized there was a singularity at the Big Bang. That somehow, when you trace the universe back, everything went wrong about 14 billion years ago. By go wrong, I mean all the laws of physics break down: they give infinities and meaningless results. Einstein himself didn't interpret this as the beginning of time; he just said, well, my theory fails. Most theories fail in some regime, and then you need a better theory. Isaac Newton's theory fails when particles go very fast; it fails to describe that. You need relativity. Likewise, Einstein said, we need a better theory of gravity than mine.

But in the 1960's, when the observational evidence for the Big Bang became very strong, physicists somehow leapt to the conclusion that it must have been the beginning of time. I am not sure why they did so, but perhaps it was due to Fred Hoyle — the main proponent of the rival steady-state theory — who seems to have successfully ridiculed the Big Bang theory by saying it did not make sense because it implied a beginning of time and that sounded nonsensical.   

Then the Big Bang was confirmed by observation. And I think everyone just bought Hoyle's argument and said, oh well, the Big Bang is true, okay, so time must have begun. So we slipped into this way of thinking: that somehow time began and that the process, or event, whereby it began is not describable by physics. That's very sad. Everything we see around us rests completely on that event, and yet that is the event we can't describe. That's basically where things stood in cosmology, and people just worried about other questions for the next 20 years.

And then in the 1980s, there was a merging of particle physics and cosmology, when the theory of inflation was invented. Inflationary theory also didn't deal with the beginning of the universe, but it took us back further towards it. People said, let's just assume the universe began, somehow. But, we're going to assume that when it began, it was full of a weird sort of energy called inflationary energy. This energy is repulsive — its gravitational field is not attractive, like ordinary matter — and the main property of that energy is that it causes the universe to expand, hugely fast. Literally like dynamite, it blows up the universe.

This inflationary theory became very popular. It made some predictions about the universe, and recent observations are very much in line with them. The type of predictions it made are rather simple and qualitative descriptions of certain features of the universe: it's very smooth and flat on large scales; and it has some density variations, of a very simple character. Inflationary theory predicts that the density variations are like random noise — something like the ripples on the surface of the sea — and fractional variation in the density is roughly the same on all length scales. And these predictions of inflation have been broadly confirmed by observation. So people have become very attracted to inflation and many people think it's correct. But inflationary theory never really dealt with the beginning of the universe. We just had to assume the universe started out full of inflationary energy. That was never explained.

My own work in this subject started about ten years ago, when I moved to Cambridge from Princeton. There I met Stephen Hawking, who, with James Hartle, developed a theory about how the universe can begin. So I started to work with Stephen, to do calculations to figure out what this theory actually predicted. Unfortunately, we quickly reached the conclusion that the theory predicted an empty universe. Indeed, this is perhaps not so surprising: if you start with nothing, it makes more sense that you'd get an empty universe rather than a full one. I'm being facetious, of course, but when you go through the detailed math, Hawking's theory seems to predict an empty universe, not a full one.

So we tried to think of various ways in which this problem might be cured, but everything we did to improve that result — to make the prediction more realistic&mdashspoils the beauty of the theory. Theoretical physics is really a wonderful subject because it's a discipline where crime does not pay in the long run. You can fake it for awhile, you can introduce fixes and little gadgets which make your theory work, but in the long run, if its no good, it'll fall apart. We know enough about the universe and the laws of nature, and how it all fits together, that it is extremely difficult to make a fully consistent theory. And when you start to cheat, you start to violate special symmetries which are, in fact, the key to the consistency of the whole structure. If  those symmetries fall apart, and then the whole theory falls apart. Hawking's theory is still an ongoing subject of research, and people are still working on it and trying to fix it, but I decided, after four or five years, that the approach wasn't working. It's very, very hard to make a universe begin and be full of inflationary energy. We needed to try something radically different.

So, along with Paul Steinhardt, I decided to organize a workshop at the Isaac Newton Institute in Cambridge, devoted to fundamental challenges in cosmology. And this was the big one: how to sensibly explain the Big Bang. We decided to bring together the most creative theorists in string theory, M theory and cosmology to brainstorm and see if there could be a different approach. The workshop was very stimulating, and our own work emerged from it.

String theory and M theory are precisely the kinds of theories which Einstein himself had been looking for. His theory of gravity is a wonderful theory and still the most beautiful and successful theory we have, but it doesn't seem to link properly with quantum mechanics, which we know is a crucial ingredient for all the other laws of physics. If you try to quantize gravity naively, you get infinities which cannot be removed without spoiling all of the theory's predictive power. String theory succeeds in linking gravity and quantum mechanics within what seems to be a consistent mathematical framework. Unfortunately, thus far, the only cases where we can really calculate well in string theory are not very physically realistic: for example, one can do very precise calculations in static, empty space with some gravitational waves. Nevertheless, because of its very tight and consistent mathematical structure, many people feel string theory is probably on the right track.

String theory introduces some weird new concepts. One is that every particle we see is actually a little piece of string. Another is that there are objects called branes, short for membranes, which are basically higher-dimensional versions of string. At the time of our workshop, a new idea had just emerged: the idea that the three dimensions of space we experience could in fact be the dimensions along one of these branes. The brane we live on could be a sort of sheet-like object floating around in a higher dimension of space. This underlies a model of the universe which fits particle physics very well and which consists of two parallel branes separated by a very, very tiny gap. Many people were talking about this model in our workshop, including Burt Ovrut, and Paul and I asked the question of what happens if these two branes collide. Until then, people had generally only considered a static setup. They described the branes sitting there, with particles on them, and they found that this setup fit a lot of the data we have about particles and forces very well. But they hadn't considered the possibility that branes could move, even though that is perfectly allowed by the theory. And if the branes can move, they can collide. Our initial thought was that, if they collide, that might have been the Big Bang. The collision would be a very violent process, in which the clash of the two branes would generate lots of heat and radiation and particles… just like a Big Bang.

Burt, Paul and I began to study this process of the collision of the branes carefully. We realized that, if it worked, this idea would imply that the Big Bang was not the beginning of time but, rather, a perfectly describable physical event.  We also realized this might have many implications, if it were true. For example, not only could we explain the Bang, we could explain the production of radiation which fills the universe, because there was a previous existing universe, within which these two branes were moving. And what explained that, you might ask? That's where the cyclic model came in. The cyclic model emerged from the idea that each Bang was followed by another, and that this could go on for eternity. The whole universe might have existed forever, and there would have been a series of these Bangs, stretching back into the infinite past, and into the infinite future.

For the last five years, we've worked on refining this model. The first thing we had to do was to match the model to observation, to see if it could reproduce some of the inflationary model's successes. Much to our surprise, we found that it could, and in some cases in a more economical way than inflation. If the two branes attract one another, then as they pull towards one another they acquire ripples, like the ripples on the sea I mentioned before. Those ripples turn into density variations as the branes collide and release matter and radiation, and these density variations later lead to the formation of galaxies in the universe.

We found that, with some simple assumptions, our model could explain the observations to just the same accuracy as the inflationary model. That's instructive, because it says there are these two very different mechanisms which achieve the same end. Both models explain rather broad, simple features of the universe: that it is nearly uniform on large scales. That it is flat, like Euclidean space, and that it has these simple density variations, with nearly the same strength on every length scale. These features are explained either by the brane collision model or by the inflation model. And there might even be another, better model which no-one has yet thought of. In any case, it is a healthy situation for science to have rival theories, which are as different as possible. This helps us to clearly identify which critical tests — be they observational or mathematical/logical — will be the key to distinguishing the theories and proving some of them wrong. Competition between models is good: it helps us see what the strengths and weaknesses and our theories are.

In this case, a key battleground between the more established inflationary model and our new cyclic model is theoretical: each model has flaws and puzzles. What happened before inflation? Does most of the universe inflate, or only some of it? Or, for the cyclic model, can we calculate all the details of the brane collision, and turn the rough arguments into precise mathematics? It is our job as theorists to push those problems to the limit to see whether they can be cured, or whether they will instead prove fatal for the models.

Equally, if not more important, is the attempt to test the models observationally, because science is nothing without observational test. Even though the cyclic model and inflation have similar predictions, there is at least one way we know of telling them apart. If there was a period of inflation — a huge burst of expansion just after the beginning of the universe — it would have filled space with gravitational waves, and those gravitational waves should be measurable in the universe today. Several experiments are already searching for them and, next year, the European Space Agency's Planck satellite will make the best attempt yet: it should be capable of detecting the gravitational waves predicted by the simplest inflation models. Our model with the colliding branes predicts that the Planck satellite and other similar experiments will detect nothing.   So we can be proved wrong by experiment.

_____

Something I'm especially excited about right now is that we have been working on the finer mathematical details of what happens at the Bang itself. We've made some very good progress in understanding the singularity,  where, according to Einstein's theory, everything becomes infinite; where all of space shrinks to a point, so the density of radiation and matter go to infinity, and Einstein's equations fall apart.

Our new work is based on a very beautiful discovery made in string theory about ten years ago, with a very technical name. It's called the Anti-De Sitter Conformal Field Theory correspondence. I won't attempt to explain that, but basically it's a very beautiful geometrical idea, which says that if I've got a region of space and time, which might be very large, then in some situations I can imagine this universe surrounded by what we call a boundary — which is basically a box enclosing the region we are interested in. About ten years ago, it was shown that even though the interior of this container is described by gravity, with all of the difficulties that brings&mdashlike the formation of black holes and the various paradoxes they cause — all of that stuff going on inside the box can be described by a theory that lives on the walls of the box surrounding the interior. That's the correspondence. A gravitational theory corresponds to another theory which has no gravity, and which doesn't have any of those gravitational paradoxes. What we've been doing recently is using this framework to study what happens at a cosmic singularity which develops in time, within the container. We study the singularity indirectly, by studying what happens on the surface of the box surrounding the universe. When we do this, we find that if the universe collapses to make a singularity, it can bounce, and the universe can come back out of the bounce. As it passes through the singularity, the universe becomes full of radiation–very much like what happens in the colliding brane model — and density variations are created.
          
This is very new work, but once it is completed I think it will go a long way towards convincing people that the Big Bang, or events like it, are actually describable mathematically. The model we're studying is not physically realistic, because it's a universe with four large dimensions of space. It turns out that's the easiest case to do, for rather technical reasons. Of course, the real universe has only three large dimensions of space, but we're settling for a four-dimensional model for the moment, because the math is easier. Qualitatively, what this study is revealing is that you can study singularities in gravity and make sense of them. I think that's very exciting and I think we're on a very interesting track. I hope we will really understand how singularities form in gravity, how the universe evolves through them, and how those singularities go away.

I suspect that will be the explanation of the Big Bang — that the Big Bang was the formation of a singularity in the universe. I think by understanding it we'll be better able to understand how the laws of physics we currently see were actually set in place: why there is electro-magnetism, the strong force, the weak force, and so on. All of these things are a consequence of the structure of the universe, on small scales, and that structure was set at the Big Bang. It's a very challenging field, but I'm very happy we're actually making progress.

_____

The current problem which is dominating theoretical physics — wrongly, I believe, because I think people ought to be studying the singularity and the Big Bang since that's clearly where everything came from, but most people are just avoiding that problem — is the fact that the laws of physics we see, according to string theory, are a result of the specific configuration of the extra dimensions of space. So you have three ordinary dimensions, that we're aware of, and then there are supposed to be six more dimensions in string theory, which are curled up in a tiny little ball.  At every point in our world there would be another six dimensions, but twisted up in a tiny little knot. And the problem is that there is a huge number of ways of twisting up these extra dimensions. Probably, there are an infinite number of ways. Roughly speaking, you can wrap them up by wrapping branes and other objects around them, twisting them up like a handkerchief with lots of bits of string and elastic bands wound around.

This caused many people to pull their hair out. String theory was supposed to be a unique theory and to predict one set of laws of physics, but the theory allows for many different types of universes with the extra dimensions twisted up in different ways. Which one do we live in? What some people have been doing, because they assume the universe simply starts after the Bang at some time, is just throwing a dice. They say, okay, well it could be twisted up in this way, or that way, or the other way, and we have no way of judging which one is more likely than the other, so we'll assume it's random. As a result, they can't predict anything. Because they don't have a theory of the Big Bang, they don't have a theory of why those dimensions ended up the way they are. They call this the landscape; there's a landscape of possible universes, and they accept that they have no theory of why we should live at any particular place in the landscape. So what do they do?

Well, they say, maybe we need the anthropic principle. The anthropic principle says, the universe is the way it is because if it was any different, we wouldn't be here. The idea is that there's this big landscape with lots of universes in it, but the only one which can allow us to exist is the one with exactly the laws of physics that we see. It sounds like a flaky argument&mdashand it is. It's a very flaky argument. Because it doesn't predict anything. It's a classic example of postdiction: its just saying, oh well, it has to be this way, because otherwise we wouldn't be here talking about it. There are many other logical flaws in the argument which I could point to, but the basic point is that this argument doesn't really get you anywhere. Its not predictive and it isn't testable. The anthropic principle, as it's currently being used, isn't really leading to any progress in the subject. Even worse than that, it is discouraging people from tackling the important questions, like the fact that string theory, as it is currently understood, is incomplete and needs to be extended to deal with the Big Bang. That's just such an obvious point, but at the moment surprisingly few people seem to appreciate it.

I'm not convinced the landscape is real. There are still some reasonable mathematical doubts, about whether all these twisted up configurations are legitimate. It's not been proven. But if it is true, then how are you going to decide which one of those configurations is adopted by the universe? It seems to me that whatever you do, you have to deal with the Big Bang. You need a mathematical theory of how Big Bangs works, either one which describes how time began, or one which describes how the universe passes through an event like the Big Bang and, as it passes through, there's going to be some dramatic effect on these twisted-up dimensions. To me, the most plausible resolution of a landscape problem would be that the dynamics of the universe will select a certain configuration as the most efficient one for passing through Big Bangs and allowing a Universe which cycles for a very long time.

For example, just to give a trivial example: if you ask, why is the gas in this room smoothly distributed, we need a physical theory to explain it. It wouldn't be helpful to say, well if it wasn't that way, there would be a big vacuum in part of the room and if I walked into it, I would die. If the distribution of gas wasn't completely uniform, we wouldn't last very long. That's the anthropic principle. But it's not the scientific explanation. The explanation is that molecules jangle around the room and when you understand their dynamics you understand that it's vastly more probable for them to settle down in a configuration where they're distributed nearly uniformly. It's nothing to do with the existence of people.

In the same way, I think the best way to approach the cosmological puzzles, is to begin by understanding how the Big Bang works. Then, as we study the dynamics of the Bang, we'll hope to discover that the dynamics lead to a universe something like ours. If you can't understand the dynamics, you really can't do much, except give up and resort to the anthropic argument. It's an obvious point, but strangely enough it's a minority view. In our subject, the majority view at the moment is this rather bizarre landscape picture where somebody, or some random process, and no one knows how it happens, chooses for us to be in one of these universes.

_____

The idea behind the cyclic universe is that the world we experience, the three dimensions of space, are actually an extended object, which you can picture as a membrane as long as you remember that it is three-dimensional, and we just draw it as two-dimensional because that is easier to visualize. According to this picture, we live on one of these membranes, and this membrane is not alone, there's another partner membrane, separated from it by a very tiny gap. There are three dimensions of space within a membrane, and a fourth dimension separating the two membranes. It so happens that in this theory there are another six dimensions of space, also curled up in a tiny little ball, but let's forget about those for the moment.

So you have this set-up with these two parallel worlds, just literally geometrically parallel worlds, separated by a small gap. We did not dream up this picture. This picture emerges from the most sophisticated mathematical models we have of the fundamental particles and forces. When we try to describe reality, quarks, electrons, photons, and all these things, we are led to this picture of the two parallel worlds separated by a gap, and our starting point was to assume that this picture is correct.

These membranes are sometimes called "end of the world branes." Basically because they're more like mirrors; they're reflectors. There is nothing outside them. They're literally the end of the world. If you traveled across the gap between the two membranes, you would hit one of them and bounce back from it. There's nothing beyond it. So all you have are these two parallel branes with the gap. But these two membranes can move. So imagine we start from today's universe. We're sitting here, today, and we're living on one of these membranes. There's this other membrane, very near to us. We can't see it because light only travels along our membrane, but the distance away from us is much tinier than the size of an atomic nucleus. It's hardly any distance from us at all. We also know that, in the universe today, there's something called "dark energy." Dark energy is the energy of empty space. Within the cyclic theory, the energy associated with the force of attraction between these two membranes is responsible, in part, for the dark energy.

Imagine that you've got these two membranes, and they attract each other. When you pull them apart you have to put energy into the system. That's the dark energy. And the dark energy itself causes these two membranes to attract. Right now the universe is full of dark energy; we know that from observations. According to our model, the dark energy is actually not stable, and it won't last forever. If you think of a ball rolling on a hill, the stored energy grows as the ball gets higher: likewise the dark energy grows as the gap between membranes widens. At some point, the ball turns around and falls back downhill. Likewise, after a period of dark energy domination, the two branes start to move towards each other, and then they collide, and that's the Bang. It is the decay of the dark energy we see today which leads to the next Big Bang, in the cyclic model.

Dark energy was only observationally confirmed in 1999 and it was a huge surprise for the inflationary picture. There is no rhyme or reason for its existence in that picture: dark energy plays no role in the early universe, according to inflationary theory.  Whereas in the cyclic model, dark energy is vital, because it is the decay of dark energy which leads to the next Big Bang. 

This picture of cyclic brane collisions actually resolves one of the longest-standing puzzles in cyclic models. The idea of a cyclic model isn't new: Friedmann and others pictured a cyclic model back in the 1930's. They envisaged a finite universe which collapsed and bounced over and over again. But Richard Tolman soon pointed out that, actually, it wouldn't remove the problem of having to have a beginning. The reason those cyclic models didn't work is that every bounce makes more radiation and that means the universe has more stuff in it. According to Einstein's equations, this makes the universe bigger after each bounce, so that every cycle lasts longer than the one before it. But, tracing back to the past, the duration of each bounce gets shorter and shorter and the duration of the cycles shrinks to zero, meaning that the universe still had to begin a finite time ago. An eternal cyclic model was impossible, in the old framework. What is new about our model is that by employing dark energy and by having an infinite universe, which dilutes away the radiation and matter after every bang, you actually can have an eternal cyclic universe, which could last forever.



"Danger – brilliant minds at work...A brilliant book: exhilarating, hilarious, and chilling." The Evening Standard (London)


Hardcover — UK
£12.99, 352 pp
Free Press, UK


Paperback — US
$13.95, 336 pp
Harper Perennial

WHAT IS YOUR DANGEROUS IDEA? Today's Leading Thinkers on the Unthinkable With an Introduction by STEVEN PINKER and an Afterword by RICHARD DAWKINS Edited By JOHN BROCKMAN

"A selection of the most explosive ideas of our age." Sunday Herald "Provocative" The Independent "Challenging notions put forward by some of the world’s sharpest minds" Sunday Times "A titillating compilation" The Guardian


"...This collection, mostly written by working scientists, does not represent the antithesis of science. These are not simply the unbuttoned musings of professionals on their day off. The contributions, ranging across many disparate fields, express the spirit of a scientific consciousness at its best — informed guesswork "Ian McEwan, from the Introduction, in The Telegraph


Paperback — US
$13.95, 272 pp
Harper Perennial



Paperback — UK
£7.99 288 pp
Pocket Books

WHAT WE BELIEVE BUT CANNOT PROVE Today's Leading Thinkers on Science in the Age of Certainty With an Introduction by IAN MCEWAN Edited By JOHN BROCKMAN

"An unprecedented roster of brilliant minds, the sum of which is nothing short of an oracle — a book ro be dog-eared and debated." Seed "Scientific pipedreams at their very best." The Guardian "Makes for some astounding reading." Boston Globe Fantastically stimulating...It's like the crack cocaine of the thinking world.... Once you start, you can't stop thinking about that question." BBC Radio 4 "Intellectual and creative magnificance...an impressive array of insights and challenges that will surely delight curious readers, generalists and specialists alike. " The Skeptical Inquirer




THE GUARDIAN
May 16, 2007

Search for happiness scoops science prize

By Alok Jha

A search for the scientific basis for happiness has beaten the tale of the world's most famous tortoise and the history of humans in Britain to be named this year's best science book.

Harvard psychologist Daniel Gilbert received the prestigious Royal Society Prize for Stumbling On Happiness, which questions the idea that any of us know what happiness actually is, never mind how to achieve or maintain it. He received a £10,000 cheque from the Royal Society's president, Martin Rees, at a ceremony in London this evening. ...

...Other shortlisted books included Homo Britannicus by palaeontologist Chris Stringer of the Natural History Museum: an epic tale of humans on the British Isles, starting when the very first turned up more than 700,000 years ago.

Nobel laureate Eric Kandel's book, In Search of Mind, knitted together behavioural and cognitive psychology, neuroscience and molecular biology to give an insight into the emerging field of the science that studies how the mind works. ...

...



THE BOSTON GLOBE
May 13, 2007

Unbelievable
That's what religion is, says Christopher Hitchens in his profoundly skeptical manifesto
By Daniel C. Dennett

In earlier ages reliable information was rather hard to get, and in general people could be excused for taking the founding myths of their religions on faith. These were the "facts" that "everyone knew," and anybody who had a skeptical itch could check it out with the local priest or rabbi or imam, or other religious authority. Today, there is really no excuse for such ignorance. It may not be your fault if you don't know the facts about the history and tenets of your own religion, but it is somebody's fault. Or more charitably, perhaps we have all been victimized by an accumulation of tradition that strongly enjoins us to lapse into a polite lack of curiosity about these facts, for fear of causing offense. It is rude, after all, to point out somebody's ignorance or gullibility. Besides, if you start calling attention to the frankly incredible creeds and deeds of other religions, they may retaliate and expose some of the embarrassing signs of all-too-human tampering with the heroic tales and traditions of your own tribe.

So only atheists are in a comfortable position to cast the first stone, and Christopher Hitchens, in "God Is Not Great," relishes the role. He has the credentials, as both a combative journalist and a surprisingly erudite literary scholar, and he wants to break the diplomacy barrier and expose the preposterous presumptions and ignoble machinations that stain the history of all religions, bringing discredit that tends to get magnified over the years by a persistent pattern of coverup, veils of illusion , and denial of one design or another. These efforts at obfuscation are quite transparent under Hitchens' s merciless scrutiny, and the results are often quite comical. ...

...



NEW YORKER
May 7, 2007


MORALITY: 2012

The social and cultural psychologist Jonathan Haidt talks with Henry Finder about the five foundations of morality, and why liberals often fail to get their message across. From “2012: Stories from the Near Future,” the 2007 New Yorker Conference.

...



NEW YORKER
May 7, 2007

ATHEISTS WITH ATTITUDE
Why do they hate Him?
by Anthony Gottlieb

...Since all the arguments against belief have been widely publicized for a long time, today’s militant atheists mus sometimes wonder why religion persists. Hitchens says that it is born of fear and probably ineradicable. Harris holds that there are genuine spiritual experiences; having kicked sand in the faces of Judaism, Christianity, and Islam he dives headlong into the surf of Eastern spirituality, encouraging readers to try Buddhist techniques of meditatio instead of dangerous creeds. Dawkins devotes a chapter, and Dennett most of his book, to evolutionary accounts of ho religion may have arisen and how its ideas spread. It’s thin stuff, and Dennett stresses that these are early days for biological account of religion. It may, however, be too late for one. If a propensity toward religious belief is “hard-wired” in the brain, as it is sometimes said to be, the wiring has evidently become frayed. This is especially true in ric countries, nearly all of which—Ireland and America are exceptions—have relatively high rates of unbelief

After making allowances for countries that have, or recently have had, an officially imposed atheist ideology, in which there might be some social pressure to deny belief in God, one can venture conservative estimates of the number of unbelievers in the world today. Reviewing a large number of studies among some fifty countries, Phil Zuckerman, a sociologist at Pitzer College, in Claremont, California, puts the figure at between five hundred million and seven hundred and fifty million. This excludes such highly populated places as Brazil, Iran, Indonesia, and Nigeria, for which information is lacking or patchy. Even the low estimate of five hundred million would make unbelief the fourth-largest persuasion in the world, after Christianity, Islam, and Hinduism. It is also by far the youngest, with no significant presence in the West before the eighteenth century. Who can say what the landscape will look like once unbelief has enjoyed a past as long as Islam’s—let alone as long as Christianity’s? God is assuredly not on the side of the unbelievers, but history may yet be.

...



PROSPECT
May, 2007

Why Home Doesn't Matter

The BBC series "Child of Our Time" assumes that studying children with their parents will help us understand how their personalities develop. But this is a mistake: parents influence their children mainly by passing on their genes. The biggest environmental influences on personality are those that occur outside the home

By Judith Rich Harris

During much of the 20th century, it was considered impolite and unscientific to say that genes play any role in determining people's personalities, talents or intelligence. But we're in the 21st century now, the era of the genome. So when Robert Winston informs us, at the opening of each episode of the BBC1 documentary series Child of Our Time, that we're going to "find out what makes us who we are," we know he's going to say that people are the way they are partly for genetic reasons. (In case you've missed it, Child of Our Time is a project tracking the lives of 25 children for their first 20 years, returning to them each year to assess their progress. This year's series—the seventh—is being screened in three episodes, starting on Sunday 6th May.)

Child of Our Time is itself a sign of scientific progress because of its enlightened approach to the genome. Nevertheless, the series is scientifically misleading. Simply depicting the lives of 25 children, or sprinkling little "experiments" here and there throughout the programmes, sheds no light on the nature vs nurture question. Psychologists studied child development in this way for the better part of a century and learned remarkably little. Observing children at home or in school, individually or in groups, is not the way to answer the question of why they turn out the way they do.

...



PUBLISHERS WEEKLY
April 28, 2007

Authors Shine at LA Times Book Prizes
By Bridget Kinsella

...Eric R. Kandel, who has also won the Nobel Prize, joked about the difference between Stockholm verses Los Angeles, where he won the Science prize for In Search of Memory: The Emergence of a New Science of Mind (W.W. Norton). "When you go to Stockholm, you know you’ve got the prize," he said. The LAT doesn’t tell the winners ahead of time. ...

...



THE NATION
MAY 28, 2007

Among the Disbelievers
By Daniel Lazare

...For a long time, religion had been doing quite nicely as a kind of minor entertainment. Christmas and Easter were quite unthinkable without it, not to mention Hanukkah and Passover. But then certain enthusiasts took things too far by crashing airliners into office towers in the name of Allah, launching a global crusade to rid the world of evil and declaring the jury still out on Darwinian evolution. As a consequence, religion now looks nearly as bad as royalism did in the late eighteenth century. But while united in their resolve to throw the bum out--God, that is--the antireligious forces appear to have given little thought to what to replace Him with should He go. They may not face the guillotine as a consequence. But they could end up making even bigger fools of themselves than the theologians they criticize.

Richard Dawkins is a case in point. It is no surprise that, along with Sam Harris, author of The End of Faith and Letter to a Christian Nation, and Daniel Dennett, author of Breaking the Spell: Religion As a Natural Phenomenon, he has emerged at the head of a growing intellectual movement aimed at relegating religion to the proverbial scrapheap of history (which by this point must be filled to overflowing). ...

...



THE TIMES
May 12 2007

How dare you call me a fundamentalist
The right to criticise ‘faith-heads’

By Richard Dawkins

...Several critics began with the ominous phrase, "I'm an atheist, BUT . . ." So here is my brief rebuttal to criticisms originating from this "belief in belief" school.

You’re preaching to the choir. What’s the point?

The nonbelieving choir is much bigger than people think, and it desperately needs encouragement to come out. Judging by the thanks that showered my North American book tour, my articulation of hitherto closeted thoughts is heard as a kind of liberation. The atheist choir, moreover, is too ready to observe society’s convention of according special respect to faith, and it goes along with society’s lamentable habit of labelling small children with the religion of their parents. You’d never speak of a “Marxist child” or a “monetarist child”. So why give religion a free pass to indoctrinate helpless children? There is no such thing as a Christian child: only a child of Christian parents.

You’re as much a fundamentalist as those you criticise.

No, please, do not mistake passion, which can change its mind, for fundamentalism, which never will. Passion for passion, an evangelical Christian and I may be evenly matched. But we are not equally fundamentalist. The true scientist, however passionately he may “believe”, in evolution for example, knows exactly what would change his mind: evidence! The fundamentalist knows that nothing will.

...



THE NEW YORK TIMES
May 13, 2007
BUSINESS

LANDING IN PRINCETON Back from his space travels, Charles Simonyi, a multimillionaire and a former executive at Microsoft, is taking up a new challenge: serving as chairman of the trustees at the Institute for Advanced Study in Princeton. Albert Einstein was a longtime faculty member at the theoretical research institute, where he sought to gain greater knowledge of the physical universe.

Mr. Simonyi spent $25 million getting closer to the universe on a 14-day trip on a Russian Soyuz spacecraft last month.

He has also spent $25 million donating money to the institute, where he has been a trustee since 1997.

The Hungarian-born Mr. Simonyi, 58, will take over his new post from James D. Wolfensohn, the former World Bank president, who is retiring after 21 years as the institute’s chairman. ELIZABETH OLSEN

...



THE WALL STREET JOURNAL
May 11, 2007; Page B1
SCIENCE JOURNAL

Scientists Draw Link Between Morality And Brain's Wiring
By Robert Lee Hotz

Most of us feel a rush of righteous certainty in the face of a moral challenge, an intuitive sense of right or wrong hard to ignore yet difficult to articulate.

A provocative medical experiment conducted recently by neuroscientists at Harvard, Caltech and the University of Southern California strongly suggests these impulsive convictions come not from conscious principles but from the brain trying to make its emotional judgment felt.

...The experiment underscores the pivotal part played by unconscious empathy and emotion in guiding decisions. "When that influence is missing," said USC neuroscientist Antonio Damasio, "pure reason is set free."

...Usually, the human brain is of two minds when it comes to morality -- selfish but self-sacrificing, survivalist yet altruistic, calculating but also compassionate. Many dilemmas force a choice between the lesser of two evils, invoking a clash of competing neural networks, said Harvard neuroscientist Joshua Greene. Intuition tempers rational deliberation, especially when our actions to help some people will harm others.

...For Harvard neuroscientist Marc Hauser, the moral-dilemma experiment is evidence the brain may be hard-wired for morality. Most moral intuitions, he said, are unconscious, involuntary and universal. To test the idea, he gathered data from thousands of people in hundreds of countries, all of whom display a remarkable unanimity in their basic moral choices. A shared innate capacity for morality may be responsible, he concluded.

Read more about and take Harvard's Moral Sense Test.

...



THE COLBERT REPORT
May 8, 2007

videoNASSIM NICHOLAS TALEB



Nassim Nicholas Taleb
believes we create stories to convince ourselves that the future is predictable

...



THE BOSTON GLOBE
May 8, 2007

Cataloguing every species on earth
By Colin Nickerson

Spurred by fears that thousands of animals, plants, and microbes will disappear from the planet before scientists can properly study them, a consortium of world-famous research institutions and funding foundations tomorrow will launch an effort to compile an enormous, computer-based "Encyclopedia of Life" to catalog every species known or found. ...

... Our ignorance is dangerous," said Edward O. Wilson, a pioneering researcher of global biodiversity, professor emeritus of entomology at Harvard, and long-time crusader for creation of an accessible encyclopedia of all life. "Life forms with which we've shared the planet are going extinct at an alarming rate -- usually before we even determine what they are and what role they play in the ecosystem. "Our knowledge of biodiversity is so incomplete that we are at risk of losing a great deal of it before it is even discovered." ...

...



THE GUARDIAN
May 7, 2007

The New Atheists loathe religion far too much to plausibly challenge it

Anti-faith proselytising is a growth industry. But its increasingly hysterical flag-bearers are heading for a spectacular failure

By Madeleine Bunting

It's an extraordinary publishing phenomenon - atheism sells. Any philosopher, professional polemicist or scientist with worries about their pension plan must now be feverishly working on a book proposal. Richard Dawkins has been in the bestseller lists on both sides of the Atlantic since The God Delusion came out last autumn following Daniel Dennett's success with Breaking the Spell. Sam Harris, a previously unknown neuroscience graduate, has now clocked up two bestsellers, The End of Faith and Letter to a Christian Nation. Last week, Christopher Hitchens' God Is Not Great: How Religion Poisons Everything was published in the US. The science writer, Matt Ridley, recently commented that on one day at Princeton he met no fewer than three intellectual luminaries hard at work on their God books. ...

...



THE PRESS
(Christchurch, New Zealand)
May 5, 2007

"WHAT IS YOUR DANGEROUS IDEA?" Edited By John Brockman
By Howard Williams

I enjoy dipping into a book of an evening and I can certainly recommend this one. The sometimes but by no means always outrageous ideas proposed by the 108 contributors to this book cover a wide range of science, economics, philosophy, politics, religion and the cosmos. This book is written to provoke, and it succeeds. It will, without doubt, annoy and stimulate many readers. That is what books are for. Having just enjoyed Richard Dawkins' book about religion and delusion — he writes a postscript to this book — it was comforting to see how many other thinkers are of the same mind: that life has no meaning, we are here by evolutionary accident, we are alone in the universe. For those who are not rationalists, mind that blood pressure.



DE GROENE AMSTERDAMMER

April 20, 2007

Dawkins: God als misvatting (The God Delusion)

...Initially Dawkins seemed to be afraid of his own neoplatonism, but he could not let go of the idea and was more and more passionately looking for unexpected connections between genetic and cultural evolution. He became one of the most prominent representatives of the Third Culture, a group of scientists who aspired to take over the role of traditional intellectuals (philosophers, writers and academics of the arts and humanities) in society.

It was the scientist, author and essayist Charles Percy Snow, who coined the name in his Reith lecture of 1959 entitled The Two Cultures, in which he stated that academics of the arts and humanities and scientists lived in separated subcultures and should get into an exchange of ideas with each other again.

That Third Culture has indeed emerged , but primarily the exact scientists are engaged with each other in an exchange of ideas about social, cultural and historical themes and not with academics of the arts and humanities. The most eminent contributors can be found on the website Edge (www.edge.org) of the Edge Foundation. ...



May 3, 2007

The TIME 100

Paul Allen
By Steven Pinker

Paul Allen is the world's most obscure celebrity, its hippest geek, its most flamboyant introvert. He is also one of its most successful dropouts. The other is Bill Gates, Allen's Seattle high school chum, with whom he founded a company called Microsoft in 1975. ...



May 3, 2007

The TIME 100

Svante Pääbo
By J. Craig Venter

Even after 148 years, many people still argue about whether Charles Darwin's theory on human evolution is correct. Svante Pääbo has done more than argue, conducting some of the most exacting work ever attempted on the DNA of human and nonhuman primates, including his spectacular 2006 announcement that he had decoded fragments of DNA from remains of Neanderthals. In so doing, he is replacing speculation with scientific fact. ...



May 4, 2007

Toward a Unified Theory of Einstein's Life

By John Horgan

In 1921, during a seemingly endless reception in his honor in Washington, Albert Einstein said to the diplomat next to him, "I've just developed a new theory of eternity." That quip came to mind after two new Einstein biographies, which together total more than 1,000 pages, thudded on my doorstep.

Walter Isaacson, a biographer and former executive at CNN and Time, and Jürgen Neffe, a German science journalist, resemble guests who show up, clutching Champagne bottles, for a party that has just ended. At least a dozen books on Einstein were published in 2005, the 100th anniversary of his five revolutionary papers on relativity, quantum mechanics, and thermodynamics. Einstein's "miraculous year" was also celebrated in countless conferences, museum exhibits, and articles in magazines, journals, and newspapers. I contributed a couple of essays to The New York Times and spoke at an event about relativity at my institution. ...



FRESH AIR WITH TERRY GROSS
May 1, 2007

'Lucifer Effect' Asks Why Good People Go Bad


Best known for the landmark Stanford Prison Experiment — in which student volunteers in a mock prison transformed with startling speed into sadistic guards or emotionally broken prisoners — Philip Zimbardo has written a book on the psychology of the unspeakable. It's called The Lucifer Effect: Understanding How Good People Turn Evil.

...



THE WASHINGTON POST
April 30, 2007

When Seeing Is Disbelieving
By Shankar Vedantam

...Nor are U.S. presidents alone when it comes to deluding themselves: Successful politicians may just be more skilled at self-deception than the rest of us. Most people, perhaps all, seem hard-wired to be able to interpret reality to suit their ends.

Self-deception has been uncovered in a wide range of situations, says Robert L. Trivers, an evolutionary biologist at Rutgers University who has studied the phenomenon. Before the Challenger explosion, for example, NASA engineers noticed that one of the O-rings on the space shuttle had been eaten a third of the way through. Since the shuttle had flown and returned to Earth, the engineers concluded that it was not a problem. Surveys show that four in five high school seniors believe they have exceptional leadership ability, and nearly every single professor in the country believes he or she is above average. ...

...



AERO-NEWS.NET
April 30, 2007

Dreamlike... Flying With Professor Stephen Hawking

A Brief History Of A Day In The Life Of An 'Amazing' Man


by ANN Editor-In-Chief and Zero-G Photographer Jim Campbell

Driving back from the Shuttle Landing Facility aboard a NASA crew bus, I watched an amazing man form his first cohesive words, following a triumphant, albeit temporary, release from the clutches of gravity...

I... T...

W... A... S...

A..M..A..Z..I..N..G..

Those were the first words laboriously dictated to a specially designed computer system by famed scientist, astrophysicist, researcher and educator Stephen Hawking. In the next few words and pictures, let me share with you some of the background, details, and sensations I noted during a truly amazing day while serving as Zero-G's photographer aboard G-Force One... one that I think will be prominent in my memories for a long time. I've done this many times... but this time, well, it was special.

And yes... it was, indeed, amazing. Absolutely.

Under the expert and exhaustive supervision of XPrize and Zero-G founder, Dr. Peter Diamandis, every aspect of the "Hawking Flight" was practiced the day before, including a full dress rehearsal flight, until we felt that nothing was left to chance... As it turned out, the prep was a bit of overkill, as the flight went off superbly and without a glitch. Here, Professor Hawking, his caregivers, and support staff come aboard via the side door of the Zero-G 727, in preparation for the historic flight.

[Exclusive photographs of Stephen Hawking's Zero G. flight]

...


|Top|