Problem of Small Probability

One 'Quant' Sees Shakeout For the Ages -- '10,000 Years'

The Telescope Problem

Two Domains

Type 1– CLT in real time

Type 2- No CLT in real time

Temporal Instability

Sampling Error & Pareto Tails

"Measurability"

- Norm L-2 : "variance" (STD), Least-Square methods, etc.
- Power Laws / scalable theoretically better, but NON-CALIBRATABLE where it matters

"Measurability"

- Old distinction "Knightian", "measurable risk v/s nonmeasurable uncertainty"
- Conflation of "measure" & "estimate"

- Nonmeasurability a function of *remoteness* of the event
- Lack of rigor at the foundations
- Lack of empirical rigor

Past & Future

Regular is predictive of regular

Fallacy of Volatility

Two Processes

15

Type-2 Noise

Left Tail

Left Tail & Silent Evidence (Diagoras problem)

"conditional on my being here, I didn't need health insurance" Bill Fung

Survival Conditioning

Consequence

- Forecasting
- Deficits
- Portfolio theory

Sub-Problems with Small Probabilities

- HARD: Inverse problem (or nonobservability of a generator of a random process, degrees of freedom fitting nonlinearities)
 (Classical Problem of Induction)
- Correcting for survival-conditioned probability
- Preasymptotics (strong or weak)
- "Atypicality" of Moves
- Correcting for the *Ludic Fallacy*

Central Problem

 HARD: Non measurability of small probability, neither empirically, nor theoretically

Use & Moment

$M_m = \sum \pi_i \Lambda_i$

Mo "True/False	M1 Expectations	M2+
Medicine	Finance (Investments)	Derivative payoffs
Psychology	Insurance	Calibration of nonlinear models
Bets (prediction markets)	General risk management	Kurtosis-based positioning ("volatility trading")
Binary/Digital derivatives	Climate	Cubic payoffs (strips of out of the money options)
Life/Death	Economics (Policy)	
What Else?	Security: Terrorism, Natural catastrophes	
	About EVERYTHING !	23

$$M_m = \int 1_A p(\lambda) \,\lambda^m \,d\lambda$$

APPLICATION	Simple payoffs M0	Complex payoffs M1+	
DOMAIN	(m=0)	(M ≥1)	
Distribution 1 ("thin tailed")	Extremely Robust	Robust	
Distribution 2 (no or unknown characteristic scale)	Extremely Robust	LIMITS of Statistics (Black Swan Domain)	

More Modest Problem Proposed

- Define boundaries of the Black Swan Domain.
- Program of *Robustness* in the Black Swan Domain

