One thing that we should keep in mind is that innate biological intelligence is fixed. We have 10^(26) calculations per second in the whole human race and there are ten billion human minds. Fifty years from now, the biological intelligence of humanity will still be at that same order of magnitude. On the other hand, machine intelligence is growing exponentially, and today it's a million times less than that biological figure. So although it still seems that human intelligence is dominating, which it is, the crossover point is around 2030 and non-biological intelligence will continue its exponential rise.

This leads some people to ask how can we know if another species or entity is more intelligent that we are? Isn't knowledge tautological? How can we know more than we do know? Who would know it, except us?

One response is not to want to be enhanced, not to have nanobots. A lot of people say that they just want to stay a biological person. But what will the Singularity look like to people who want to remain biological? The answer is that they really won't notice it, except for the fact that machine intelligence will appear to biological humanity to be their transcendent servants. It will appear that these machines are very friendly are taking care of all of our needs, and are really our transcendent servants. But providing that service of meeting all of the material and emotional needs of biological humanity will comprise a very tiny fraction of the mental output of the non-biological component of our civilization. So there's a lot that, in fact, biological humanity won't actually notice.

There are two levels of consideration here. On the economic level, mental output will be the primary criterion. We're already getting close to the point that the only thing that has value is information. Information has value to the extent that it really reflects knowledge, not just raw data. There are a few products on this table — a clock, a camera, tape recorder — that are physical objects, but really the value of them is in the information that went into their design: the design of their chips and the software that's used to invent and manufacture them. The actual raw materials — a bunch of sand and some metals and so on — is worth a few pennies, but these products have value because of all the knowledge that went into creating them.

And the knowledge component of products and services is asymptoting towards 100 percent. By the time we get to 2030 it will be basically 100 percent. With a combination of nanotechnology and artificial intelligence, we'll be able to create virtually any physical product and meet all of our material needs. When everything is software and information, it'll be a matter of just downloading the right software, and we're already getting pretty close to that.

On a spiritual level, the issue of what is consciousness is another important aspect of this, because we will have entities by 2030 that seem to be conscious, and that will claim to have feelings. We have entities today, like characters in your kids' video games, that can make that claim, but they are not very convincing. If you run into a character in a video game and it talks about its feelings, you know it's just a machine simulation; you're not convinced that it's a real person there. This is because that entity, which is a software entity, is still a million times simpler than the human brain.

In 2030, that won't be the case. Say you encounter another person in virtual reality that looks just like a human but there's actually no biological human behind it — it's completely an AI projecting a human-like figure in virtual reality, or even a human-like image in real reality using an android robotic technology. These entities will seem human. They won't be a million times simpler than humans. They'll be as complex as humans. They'll have all the subtle cues of being humans. They'll be able to sit here and be interviewed and be just as convincing as a human, just as complex, just as interesting. And when they claim to have been angry or happy it'll be just as convincing as when another human makes those claims.

At this point, it becomes a really deeply philosophical issue. Is that just a very clever simulation that's good enough to trick you, or is it really conscious in the way that we assume other people are? In my view there's no real way to test that scientifically. There's no machine you can slide the entity into where a green light goes on and says okay, this entity's conscious, but no, this one's not. You could make a machine, but it will have philosophical assumptions built into it. Some philosophers will say that unless it's squirting impulses through biological neurotransmitters, it's not conscious, or that unless it's a biological human with a biological mother and father it's not conscious. But it becomes a matter of philosophical debate. It's not scientifically resolvable.

The next big revolution that's going to affect us right away is biological technology, because we've merged biological knowledge with information processing. We are in the early stages of understanding life processes and disease processes by understanding the genome and how the genome expresses itself in protein. And we're going to find — and this has been apparent all along — that there's a slippery slope and no clear definition of where life begins. Both sides of the abortion debate have been afraid to get off the edges of that debate: that life starts at conception on the one hand or it starts literally at birth on the other. They don't want to get off those edges, because they realize it's just a completely slippery slope from one end to the other.

But we're going to make it even more slippery. We'll be able to create stem cells without ever actually going through the fertilized egg. What's the difference between a skin cell, which has all the genes, and a fertilized egg? The only differences are some proteins in the eggs and some signalling factors that we don't fully understand, yet that are basically proteins. We will get to the point where we'll be able to take some protein mix, which is just a bunch of chemicals and clearly not a human being, and add it to a skin cell to create a fertilized egg that we can then immediately differentiate into any cell of the body. When I go like this and brush off thousands of skin cells, I will be destroying thousands of potential people. There's not going to be any clear boundary.

This is another way of saying also that science and technology are going to find a way around the controversy. In the future, we'll be able to do therapeutic cloning, which is a very important technology that completely avoids the concept of the fetus. We'll be able to take skin cells and create, pretty directly without ever going through a fetus, all the cells we need.

We're not that far away from being able to create new cells. For example, I'm 53 but with my DNA, I'll be able to create the heart cells of a 25-year-old man, and I can replace my heart with those cells without surgery just by sending them through my blood stream. They'll take up residence in the heart, so at first I'll have a heart that's one percent young cells and 99 percent older ones. But if I keep doing this every day, a year later, my heart is 99 percent young cells. With that kind of therapy we can ultimately replenish all the cell tissues and the organs in the body. This is not something that will happen tomorrow, but these are the kinds of revolutionary processes we're on the verge of.

If you look at human longevity — which is another one of these exponential trends — you'll notice that we added a few days every year to the human life expectancy in the 18th century. In the 19th century we added a few weeks every year, and now we're now adding over a hundred days a year, through all of these developments, which are going to continue to accelerate. Many knowledgeable observers, including myself, feel that within ten years we'll be adding more than a year every year to life expectancy.

As we get older, human life expectancy will actually move out at a faster rate than we're actually progressing in age, so if we can hang in there, our generation is right on the edge. We have to watch our health the old-fashioned way for a while longer so we're not the last generation to die prematurely. But if you look at our kids, by the time they're 20, 30, 40 years old, these technologies will be so advanced that human life expectancy will be pushed way out.

Previous | Page 1 2 3 4 5 6 Next